Сетевая модель tcp/ip

Уровни и протоколы TCP/ IP

Протоколы TCP и IP совместно управляют потоками данных ( как входящими, так и исходящими) в сети. Но если протокол IP просто передает пакеты, не обращая внимания на результат, TCP должен проследить за тем, чтобы пакеты прибыли в положенное место. В частности, TCP отвечает за выполнение следующих задач:

o Открытие и закрытие сеанса.

o Управление пакетами.

o Управление потоком данных.

o Обнаружение и обработка ошибок.

Модель TCP/IP

Протокол TCP/IP обычно рассматривается в контексте эталонной модели, определяющей структурное деление его функций. Однако модель TCP/IP разрабатывалась значительно позже самого комплекса протоколов, поэтому она ни как не могла быть взята за образец при проектировании протоколов.

Семейство протоколов TCP/IP

Семейство протоколов IP состоит из нескольких протоколов, часто обозначаемых общим термином “TCP/IP”:

o IP – протокол межсетевого уровня;

o TCP – протокол межхостового уровня, обеспечивающий надежную доставку;

o UDP – протокол межхостового уровня, не обеспечивающий надежной доставки;

o ICMP – многоуровневый протокол, упрощающий контроль, тестирование и управление в сетях IP. Различные протоколы ICMP распространяются на межхостовой и прикладной уровни.

Связи между этими протоколами изображены на рисунке.

Протокол IP

Протокол IP (Internet Protocol) является самым распространенным межсетевым протоколом в мире. Функциональность протокола определяется объемом данных, хранящихся в заголовках. Структура заголовков IP, а, следовательно, и его возможности первоначально определялись в серии RFC и других общедоступных документов, которые были опубликованы еще во времена создания группы IETF. Обычно считается, что базовым документом для современной версии IP является RSC 791 («internet protocol», Postel, J.B; 1981).

Благодаря неустанной работе IETF протокол IP постоянно развивается. В последующих RFC (Request for Comments) были добавлены многочисленные новые возможности. Тем не менее, все они строятся на основе, заложенной в RFC 791. С архитектурной точки зрения текущая версия IP имеет номер 4 (Ipv4). Со временем новая версия (Ipv6) постепенно вытеснит Ipv4, но в настоящее время повсеместно поддерживается стандарт Ipv4.

Маска подсети

Второй элемент, который требуется для работы TCP/IP, является маской подсети. Маска подсети используется протоколом TCP/IP для определения того, находится ли узел в локальной подсети или в удаленной сети.

В протоколе TCP/IP части IP-адреса, используемые в качестве адресов сети и узла, не фиксируются, поэтому сети и адреса узлов, указанные выше, не могут быть определены, если у вас больше сведений. Эти сведения предоставляются в другом 32-разрядном номере, который называется маской подсети. В этом примере маской подсети является 255.255.255.0. Это значение не очевидно, если вы не знаете, что 255 в двоичной нотации равно 11111111; Таким образом, маска подсети — 11111111.11111111.11111111.0000000.

Выделяйте IP-адрес и маску подсети вместе, можно разделять части сети и узлы адреса:

11000000.10101000.01111011.10000100—IP-адрес (192.168.123.132) 11111111.11111111.11111111.00000000—маска подсети (255.255.255.0)

Первые 24 бита (количество из них в маске подсети) определяются как сетевой адрес с последними 8 битами (количеством оставшихся нулей в маске подсети), идентифицируемым как адрес узла. В результате вы получите следующее:

11000000.10101000.01111011.00000000—сетевой адрес (192.168.123.0) 00000000.00000000.00000000.10000100—адрес узла (000.000.000.132)

Итак, теперь вы знаете, что в этом примере используется маска подсети 255.255.255.0, идентификатор сети — 192.168.123.0, а адрес узла — 0.0.0.132. Когда пакет поступает в под192.168.123.0 подсети (из локальной подсети или удаленной сети), а адрес назначения 192.168.123.132, компьютер будет получать его из сети и обрабатывать.

Почти все маски подсети преобразуются в двоичные числа, расположенные слева и все нули справа. Вот некоторые другие распространенные маски подсети:

Десятичный двоичный 255.255.255.192 1111111.11111111.1111111.11000000 255.255.255.224 1111111.11111111.1111111.11100000

Интернет RFC 1878 (доступна из интернирования общедоступных сведений о службах регистрации доменных имен в Интернете) описание допустимых подсетей и масок подсетей, которые можно использовать в сетях TCP/IP.

TCP протокол

TCP — это транспортный протокол, является частью стека протоколов TCP IP, он выполняет функции управления передачей данных и следит за их сохранностью, считается надежным. Расшифровывается как Transmission Control Protocol (протокол управления передачей).

Это стандарт, который определяет как нужно устанавливать связь и поддерживать ее, чтобы две программы могли обмениваться данными между собой.

Является именно надежным протоколом так как:

1. Использует логическое соединение, благодаря чему обеспечивается надежная доставка данных.2. Пронумеровывает передаваемые пакеты данных и проверяет их доставку, принимающая сторона высылает подтверждение о получении, в случае потери каких-либо пакетов создается повторная передача.3. Делит передаваемые данные на части — пакеты данных, затем передает их нижнему уровню, и собирает их, когда они приходят к получателю.4. Проверяет контрольную сумму передаваемых пакетов, если она отличается — создается новая отправка.5. Проверяет пакеты на дубликаты, в случае обнаружения таковых — уничтожает.6. Контролирует скорость передачи.

Заголовок TCP протокола

Весит 20 байт, если нет дополнительных опций, вот как он выглядит:

У каждого TCP сегмента указывается порт источника и назначения, с помощью которых происходит идентификация отправляющего и принимающего приложения. Эти порты вместе с IP адресами уникально идентифицируют каждое соединение. Комбинация IP и порта — это сокет (socket).

Номер последовательности — нумерация каждого отправляемого байта в потоке передаваемых данных. А номер подтверждения — это следующий номер байта после полученного, который ждет получатель. Т.е. передача идет последовательно, например, получатель получил 100-ый байт, следующим ждет 101.

Остальные значения можно понять из самой картинки. Разве, что размер окна — он скользящий, т.е. зависит от качества сети. Если много данных теряется он может уменьшаться и наоборот. Он регулирует количество передаваемых байтов.

А флаги: URG, ACK, PSH и т.д. — описывают дополнительные значения сегмента, так, например, флаг FIN применяется для завершения соединения.

Функциональность

Протокол управления передачей данных (TCP) работает с Интернет-протоколом (IP). Отправка пакетов данных с одного компьютера на другой является его основной функцией. TCP и IP, вместе взятые, являются двумя протоколами, которые управляют Интернетом. В документе № 793 о стандартах Запроса комментариев (RFC) протокол управления передачей определен Целевой группой по инженерно-техническому обеспечению Интернета (IETF).

Данные, передаваемые по TCP соединениям, делятся на сегменты с независимой нумерацией. Каждый сегмент содержит пункт назначения источника и раздел данных, которые помещаются в заголовок. Протокол управления передачей данных отвечает за упорядочивание сегментов в правильной последовательности по мере их поступления в приемную часть. TCP отвечает за отслеживание этих сегментов, в то время как IP-адрес управляет фактической доставкой данных. Он включает встроенную проверку ошибок, которая гарантирует получение каждого запрошенного сегмента. TCP также включает в себя проверку ошибок, которая гарантирует, что каждый пакет доставлен в соответствии с запросом. Передача таких данных, как файлы и веб-страницы через Интернет, осуществляется с помощью TCP. Контроль над надежной передачей данных является основной функцией TCP.

В некоторых случаях пакеты теряются или доставляются не по назначению. Это связано с непредсказуемым сетевым поведением. Чтобы свести эту проблему к минимуму, ПТС запрашивает повторный заказ и доставку товаров. Это, однако, меняет скорость доставки на пару секунд. Необходимость в повторном упорядочении пакетов и ретрансляции после их получения создает задержку в потоке TCP. Согласно исследованиям, такие приложения, как FTP, Telnet, электронная почта и World Wide Web (WWW), предпочитают именно эту транспортную услугу — около 90% трафика этих сетей.

TCP/IP Адресация

Интернет-адреса, такие как IP (интернет-протокол), имеют полный механизм и являются одним из наиболее распространенных. TCP, с другой стороны, не нуждается в одной сложной системе адресации. TCP использует только номера, также называемые «портами», которые предоставляются устройством, с которым он в данный момент работает. Это делается для того, чтобы определить, для какой службы предназначены отправка и получение пакетов.

Например, порт 80 для TCP используется в основном для веб-браузеров, а порт 25 — для электронной почты. Для данной услуги вводится IP-адрес и номер порта, например 192.168.66.5:80.

Описание модели TCP/IP в технической литературе

В модели TCP/IP, в отличие от модели OSI, физический уровень никак не описывается. Тем не менее, в некоторых учебниках, для лучшего понимания, описывается «гибридная модель TCP/IP — OSI» из 5 уровней, содержащая дополнительный — физический уровень.

Следующая таблица показывает различные вариации в описании модели TCP/IP. Количество уровней варьируется от трёх до семи.

Kurose, Forouzan Comer, Kozierok Stallings Tanenbaum Cisco Academy OSI model
Пять уровней Четыре + 1 уровень Пять уровней Пять уровней Четыре уровня Четыре уровня Три уровня Семь уровней
«Five-layer Internet model» or «TCP/IP protocol suite» «TCP/IP 5-layer reference model» «TCP/IP model» «TCP/IP 5-layer reference model» «Internet model» «Internet model» «Arpanet reference model» OSI model
Application Application Application Application Application (Прикладной) Application Application/Process Application
Presentation
Session
Transport Transport Host-to-host or transport Transport Transport (Транспортный) Transport Host-to-host Transport
Network Internet Internet Internet Internet (Сетевой) Internetwork Network
Data link Data link (Network interface) Network access Data link Link (Канальный) Network interface Network interface Data link
Physical (Hardware) Physical Physical Physical

Формат заголовка IP-пакета

Для того чтобы понять, как протокол IP реализует эту задачу, рассмотрим формат заголовка IP пакета.

Номер версии

Первое поле номер версии. Сейчас используется две версии протокола IP 4 и 6. Большая часть компьютеров использует IPv4. Длина  адреса в этой версии 4 байта. Формат адреса IP версии 4 мы рассматривали подробно. Проблема в том, что адресов IPv4, четыре с небольшим миллиарда, что уже сейчас не хватает для всех устройств в сети, а в будущем точно не хватит. Поэтому была предложена новая версия IPv6 в которой длина IP адреса составляет 16 байт. Сейчас эта версия вводится в эксплуатацию, но процесс занимает очень долгое время.

Длина заголовка

Следующее поле длина заголовка. В отличии от Ethernet заголовок IP включает обязательные поля, а также может включать дополнительные поля, которые называются опции. В поле длина заголовка записывается полная длина, как обязательной части, так и опции.

Тип сервиса

Следующее поле тип сервиса. Это поле нужно для обеспечения необходимого качества обслуживания, но сейчас на практике используется очень редко.

Общая длина

Следующее поле общая длина. Общая длина содержит длину всего IP пакета, включая заголовок и данные. Максимальная длина пакета 65 535 байт, но на практике такие большие пакеты не используются, а максимальный размер ограничен размером кадра канального уровня, а для Ethernet это 1 500 байт. В противном случае для передачи одного IP пакета необходимо было бы несколько кадров канального уровня что неудобно.

Время жизни

Дальше идет поле время жизни. Время жизни Time To Live или TTL — это максимальное время в течение которого пакет может перемещаться по сети. Оно введено для того чтобы пакеты не гуляли по сети бесконечно, если в конфигурации сети возникла какая-то ошибка. Например, в результате неправильной настройке маршрутизаторов в сети, может образоваться петля. Раньше, время жизни измерялось в секундах, но сейчас маршрутизаторы обрабатывают пакет значительно быстрее чем за секунду, поэтому время жизни уменьшается на единицу на каждом маршрутизаторе, и оно измеряется в количествах прохождения через маршрутизаторы по-английски (hop) от слова прыжок. Таким образом название время жизни сейчас стало уже некорректным.

Тип протокола

После времени жизни, указывается тип протокола следующего уровня. Это поле необходимо для реализации функции мультиплексирования и демультиплексирования, то есть передачи с помощью протокола IP данных от разных протоколов следующего уровня. В этом поле указывается код протокола следующего уровня, некоторые примеры кодов для TCP код 6, UDP — 17 и ICMP — 1.

Контрольная сумма

Затем идет контрольная сумма, которая используется для проверки правильности доставки пакета, если при проверке контрольные суммы обнаруженные ошибки, то пакет отбрасывается, никакой информации отправителю пакета не отправляется. Контрольная сумма рассчитывается только по заголовку IP пакета и она пересчитывается на каждом маршрутизаторе из-за того что данные в заголовке меняются. Как минимум изменяется время жизни пакета, а также могут измениться некоторые опции.

IP адрес получателя и отправителя

После контрольной суммы идут IP адрес  отправителя, и IP адрес получателя. В IPv4 длина IP адреса четыре байта, 32 бита на этом обязательная часть IP заголовка заканчивается, после этого идут не обязательные поля которые в IP называются опции.

Опции

Некоторые примеры опций. Для диагностики работы сети используется опция — записать маршрут, при которой в IP пакет записывается адрес каждого маршрутизатора через которую он проходит.

И опция — временные метки, при установке которой, каждый маршрутизатор записывает время прохождения пакеты.

Также опции позволяют отказаться от автоматической маршрутизации, и задать маршрут отправитель:

  • Это может быть жесткая маршрутизация, где в пакете явно указывается перечень маршрутизаторов через которые необходимо пройти.
  • И свободные маршрутизации в этом случае указываются только некоторые маршрутизаторы, через которые пакет должен пройти обязательно, также при необходимости он может пройти через другие маршрутизаторы.

Опции в заголовке IP может быть несколько и они могут иметь разный размер. В то же время длина IP заголовка должна быть кратна 32, поэтому при необходимости, в конце IP заголовок заполняются нулями до выравнивание по границе 32 бита. Следует отметить, что сейчас опции в заголовке IP почти не используются.

В статье был рассмотрен протокол IP (Internet Protocol) — протокол межсетевого взаимодействия. Протокол IP является основой интернета. В OSI находится на сетевом уровне.

Маска подсети

Маска подсети выявляет из IP-адреса подсеть и номер хоста.

Например, IP-адрес имеет маску . В таком случае формат записи будет выглядеть так [192.168.38.2/24]. Число «24» – это количество бит в маске. Восемь бит равняется одному октету, который также может называться байтом.

Если подробнее, то маску подсети можно представить в двоичной системе счисления таким образом: . В ней имеется четыре октета, и запись состоит из «1» и «0». Если сложить количество единиц, то получим в сумме «24». К счастью, считать по единице не обязательно, ведь в одном октете – 8 значений. Видим, что три из них заполнены единицами, складываем и получаем «24».

Если говорить именно о маске подсети, то в двоичном представлении она имеет в одном октете либо единицы, либо нули. При этом последовательность такова, что сначала идут байты с единицами, а только потом с нулями.

Рассмотрим небольшой пример. Есть IP-адрес и маска подсети . Считаем и записываем: [192.168.46.2/24]. Теперь сопоставляем маску с IP-адресом. Те октеты маски, в которых все значения равны единице (255) оставляют соответствующие им октеты в IP-адресе без изменения. Если же в значении нули (0), то октеты в IP-адресе также становятся нулями. Таким образом, в значении адреса подсети получаем .

Как мы пришли к TCP/IP

Сегодня в мире компьютерных сетей используется одна сетевая модель: TCP/IP. Однако мир не всегда был таким простым. Когда-то не существовало сетевых протоколов, включая TCP/IP. Производители создали первые сетевые протоколы; эти протоколы поддерживали только компьютеры конкретного производителя.

Например, IBM, компьютерная компания с самой большой долей на многих рынках в 1970-х и 1980-х годах, опубликовала свою сетевую модель Systems Network Architecture (SNA) в 1974 году. Другие производители также создали свои собственные проприетарные сетевые модели. В результате, если ваша компания покупала компьютеры трех производителей, сетевым инженерам часто приходилось создавать три разные сети на основе сетевых моделей, созданных каждой компанией, а затем каким-то образом соединять эти сети, что значительно усложняло объединенные сети. В левой части рисунка 1 показано общее представление о том, как могла бы выглядеть корпоративная сеть компании в 1980-х годах, до того, как TCP/IP стал обычным явлением в корпоративных объединенных сетях.

Рисунок 1 – История развития: движение от проприетарных моделей к открытой модели TCP/IP

Хотя проприетарные сетевые модели, определяемые производителями, часто работают хорошо, наличие открытой сетевой модели, не зависящей от производителя, может способствовать конкуренции и снизить сложность. Международная организация по стандартизации (ISO) взяла на себя задачу создать такую модель, начав еще в конце 1970-х годов работу над так называемой сетевой моделью взаимодействия открытых систем (OSI, Open Systems Interconnection). ISO поставила перед моделью OSI благородную цель: стандартизировать сетевые протоколы передачи данных, чтобы обеспечить связь между всеми компьютерами на всей планете. Во время работы ISO над достижением этой амбициозной и благородной цели в процессе были задействованы участники из большинства технологически развитых стран мира.

Вторая, менее формальная попытка создать открытую, нейтральную по отношению к производителям открытую сетевую модель возникла в результате контракта Министерства обороны США (DoD, Department of Defense). Исследователи из различных университетов вызвались помочь в дальнейшей разработке протоколов, относящихся к исходной работе Министерства обороны США. Эти усилия привели к созданию конкурирующей открытой сетевой модели под названием TCP/IP.

В течение 1990-х годов компании начали добавлять OSI, TCP/IP или и то, и другое в свои корпоративные сети. Однако к концу 1990-х TCP/IP стал основным, и OSI отпала. Центральная часть рисунка 1 показывает общую идею корпоративных сетей того десятилетия – сети, построенные на нескольких сетевых моделях, но включающие TCP/IP.

Сейчас, в двадцать первом веке, доминирует TCP/IP. Проприетарные сетевые модели всё еще существуют, но в основном от них отказались в пользу TCP/IP. Модель OSI, развитие которой частично пострадало из-за более медленного официального процесса стандартизации по сравнению с TCP/IP, так и не добилось успеха на рынке. И TCP/IP, сетевая модель, изначально созданная почти целиком группой добровольцев, стала самой успешной сетевой моделью за всю историю, как показано на правой части рисунка 1.

В данной главе вы прочитаете о некоторых основах TCP/IP. Хотя вы узнаете некоторые интересные факты о TCP/IP, настоящая цель – помочь вам понять, что на самом деле представляет собой сетевая модель или сетевая архитектура, и как она работает.

Сравнение с моделью OSI

Три верхних уровня в модели OSI, то есть уровень приложения, уровень представления и уровень сеанса, отдельно не различаются в модели TCP/IP, которая имеет только прикладной уровень над транспортным уровнем. Хотя некоторые чистые приложения протокола OSI, такие как X.400, также объединяют их, нет требования, чтобы стек протокола TCP/IP должен накладывать монолитную архитектуру над транспортным уровнем. Например, протокол NFS-приложений работает через протокол представления данных External Data Representation (XDR), который, в свою очередь, работает по протоколу Remote Procedure Call (RPC). RPC обеспечивает надежную передачу данных, поэтому он может безопасно использовать транспорт UDP с максимальным усилием.

Различные авторы интерпретировали модель TCP/IP по-разному и не согласны с тем, что уровень связи или вся модель TCP/IP охватывает проблемы первого уровня модели OSI (физический уровень) или предполагается, что аппаратный уровень ниже уровня канала.

Несколько авторов попытались включить слои 1 и 2 модели OSI в модель TCP/IP, поскольку они обычно упоминаются в современных стандартах (например, IEEE и ITU). Это часто приводит к модели с пятью слоями, где уровень связи или уровень доступа к сети разделяются на слои 1 и 2 модели OSI.

Например, считается, что уровни сеанса и представления пакета OSI включены в прикладной уровень пакета TCP/IP. Функциональность уровня сеанса можно найти в протоколах, таких как HTTP и SMTP, и более очевидна в таких протоколах, как Telnet и протокол инициации сеанса (SIP). Функциональность уровня сеанса также реализована с нумерацией портов протоколов TCP и UDP, которые охватывают транспортный уровень в наборе TCP/IP. Функции уровня представления реализуются в приложениях TCP/IP со стандартом MIME при обмене данными.

Конфликты очевидны также в оригинальной модели OSI, ISO 7498, когда не рассматриваются приложения к этой модели, например, ISO 7498/4 Management Framework или ISO 8648 Internal Organization of the Network layer (IONL). Когда рассматриваются документы IONL и Management Framework, ICMP и IGMP определяются как протоколы управления уровнем для сетевого уровня. Аналогичным образом IONL предоставляет структуру для «зависимых от подсетей объектов конвергенции», таких как ARP и RARP.

Протоколы IETF могут быть инкапсулированы рекурсивно, о чем свидетельствуют протоколы туннелирования, такие как Инкапсуляция общей маршрутизации (GRE). GRE использует тот же механизм, который OSI использует для туннелирования на сетевом уровне.
Существуют разногласия в том, как вписать модель TCP/IP в модель OSI, поскольку уровни в этих моделях не совпадают.

К тому же, модель OSI не использует дополнительный уровень — «Internetworking» — между канальным и сетевым уровнями. Примером спорного протокола может быть ARP или STP.

Вот как традиционно протоколы TCP/IP вписываются в модель OSI:

Распределение протоколов по уровням модели OSI
TCP/IP OSI
7 Прикладной Прикладной напр., HTTP, SMTP, SNMP, FTP, Telnet, SSH, SCP, SMB, NFS, RTSP, BGP
6 Представления напр., XDR, AFP, TLS, SSL
5 Сеансовый напр., ISO 8327 / CCITT X.225, RPC, NetBIOS, PPTP, L2TP, ASP
4 Транспортный Транспортный напр., TCP, UDP, SCTP, SPX, ATP, DCCP, GRE
3 Сетевой Сетевой напр., IP, ICMP, IGMP, CLNP, OSPF, RIP, IPX, DDP
2 Канальный Канальный напр., Ethernet, Token ring, HDLC, PPP, X.25, Frame relay, ISDN, ATM, SPB, MPLS, ARP
1 Физический напр., электрические провода, радиосвязь, волоконно-оптические провода, инфракрасное излучение

Обычно в стеке TCP/IP верхние 3 уровня модели OSI (прикладной, представления и сеансовый) объединяют в один — прикладной. Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению.

Что такое TCP/IP

TCP/IP — это набор протоколов, специальных правил, которые упорядочивают и обеспечивают надежный обмен информацией среди устройств, объединенных в сеть. Это может быть локальная сетка из двух компьютеров, так и глобальная паутина.

Полностью пишется, как, Transmission Control Protocol/Internet Protocol, что в переводе означает — Протокол управления передачи/Интернета.

Позволяет взаимодействовать между собой устройствам, находящимся в разных сетях и с различными операционными системами, например, между Windows, Mac OS, Linux и т.д.

Название данного стека — набора правил сложилось из основных двух:

  • Протокол IP — берет на себя задачу по адресации, определяет, где в передаваемых данных: адрес, содержимое.
  • Протокол TCP — обеспечивает и контролирует надежную передачу информации и ее целостность.

Также включает в себя и другие, но так, как эти являются базовыми, закрепилось именно такое называние. Как видите, все оказалось довольно просто.

Как работает TCP/IP — принцип работы

У каждого компьютера и ноутбука в сети есть свой уникальный ip адрес. Программы, которые используются на компьютере применяют свой уникальный порт для их идентификации. Порт необходим, чтобы программы различали друг друга, т.к. только по айпи будет не понятно, какой софт запрашивает информацию и куда ее следует отправлять.

Так обмениваются между собой программы по сети:

Программа 1 — отправитель:
IP адрес: 192.168.0.32
Порт: 2054

Программа 2 — получатель:
IP адрес: 192.168.0.34
Порт: 2071

Пересылаемые данные пакета:
— — —

IP — это уникальный адрес компьютера. Порт — это идентификатор приложение установленного на нем. Связка, IP + порт называется — сокет.

Стек протоколов TCP/IP

Стек разделяется на четыре уровня, в каждом из которых свои протоколы. Все они функционируют одновременно, поэтому у каждого есть свои правила, чтобы они работали без перебоев и конфликтов.

1. Прикладной / Для приложений. Это: HTTP, SMTP, DNS, FTP и т.д. Т.е. Веб, почта, передача файлов и прочее.2. Транспортный. Это: TCP, UPD и т.д. Отвечает за связь между компьютерами и за доставку данных.3. Сетевой (межсетевой). IP, IGMP и т.д. Отвечает за адресацию.4. Канальный / Сетевые интерфейсы. Это: Ethernet, Wi-Fi, DSL.

На этом стеке и реализовано все взаимодействие пользователей в IP сетях. Также, существуют и другие стеки: OSI, IPX/SPX, IPX/SPX.

В заключение

Вот вы и узнали, что это такое, постарался объяснить все просто, для «чайников». Следующие материалы также будут посвящены технологии передачи данных в интернете.

Задачи протокола ТСР

В сеансе связи ТСР обеспечивает ряд важных функций, большая часть которых связана с обеспечением интерфейса между различными приложениями и сетью. К числу этих функций относятся:

o мультиплексирование данных между приложениями и сетью;

o проверка целостности полученных данных;

o восстановление нарушенного порядка данных;

o подтверждение успешного получения данных;

o регулирование скорости передачи данных;

o измерение временных характеристик;

o координация повторной передачи данных, поврежденных или потерянных в процессе пересылки.

Протокол UDP

Протокол UDP (User Datagram Protocol) является вторым протоколом межхостового уровня (соответствующего транспортному уровню в эталонной модели OSI). UDP обеспечивает простейшие, требующие минимальных затрат средства передачи данных в виде так называемых «дейтаграмм» (datagrams).

Как правило, UDP используется в приложениях, ориентированных на широковещательную рассылку или работу с сообщениями, а также там, где не требуется полная надежность, обеспечиваемая протоколом TCP.

Счетчики и ошибки протоколов

Однажды сайт одного из наших клиентов подвергся DDOS атаке, в мониторинге было видно только увеличение трафика на сетевом интерфейсе, но мы не показывали абсолютно никаких метрик по содержанию этого трафика.

В данный момент однозначного ответа на этот вопрос окметр дать по-прежнему не может, так как сниффинг мы только начали осваивать, но мы немного продвинулись в этом вопросе.

Попробуем что-то понять про эти выбросы входящего трафика:

Теперь мы видим, что это входящий UDP трафик, но здесь не видно первых из трех выбросов.
Дело в том, что счетчики пакетов по протоколам в linux увеличиваются только в случае успешной обработки пакета.

Попробуем посмотреть на ошибки:

А вот и наш первый пик — ошибки UDP:NoPorts (количество датаграмм, пришедших на UPD порты, которые никто не слушает)

Данный пример мы эмулировали с помощью iperf, и в первый заход не включили на сервер-приемщик пакетов на нужном порту.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector