Производительность ssd с pci-express 4.0 на платформе x570 + ryzen 3000

Содержание

Подделки из китая

Что такое PCI Express и что он обозначает?

PCI Express означает Peripheral Component Interconnect Express и представляет собой стандартный интерфейс для подключения периферийного оборудования к материнской плате на компьютере. Другими словами, PCI Express или сокращенно PCIe — это интерфейс, который подключает к материнской плате внутренние карты расширения, такие как видеокарты, звуковые карты, адаптеры Ethernet и Wi-Fi . Кроме того, PCI Express также используется для подключения некоторых типов твердотельных накопителей, которые обычно очень быстрые.

Какие типы слотов и размеров PCI Express существуют, и что означают линии PCIe? Для подключения плат расширения к материнской плате PCI Express использует физические слоты. Обычными слотами PCI Express, которые мы видим на материнских платах, являются PCIe x1, PCIe x4, PCIe x8 и PCIe x16. Число, которое следует за буквой «х», говорит нам о физических размерах слота PCI Express, который, в свою очередь, определяется количеством контактов на нем. Чем больше число, тем длиннее слот PCIe и тем больше контактов, которые соединяют плату расширения с гнездом.

Кроме того, число «х» также указывает, сколько полос доступно в этом слоте расширения. Вот как сравниваются часто используемые слоты PCIe:

  • PCIe x1: имеет 1 полосу , 18 контактов и длину 25 мм
  • PCIe x4: имеет 4 линии , 32 контакта и длину 39 мм
  • PCIe x8: имеет 8 линий , 49 контактов и длину 56 мм
  • PCIe x16: имеет 16 линий , 82 контакта и длину 89 мм

Линии PCI Express — это пути между набором микросхем материнской платы и слотами PCIe или другими устройствами, являющимися частью материнской платы, такими как разъем процессора, слоты M.2 SSD, сетевые адаптеры, контроллеры SATA или контроллеры USB.

В PCI Express каждая полоса индивидуальна, что означает, что она не может быть разделена между различными устройствами. Например, если ваша видеокарта подключена к слоту PCIe x16, это означает, что она имеет 16 независимых линий, выделенных только для нее. Никакой другой компонент не может использовать эти полосы, кроме графической карты.

Вот идея, которая может упростить вам понимание того, что такое линии PCI Express: просто представьте, что PCI Express — это магистраль, а автомобили, которые едут по ней, — это данные, которые передаются. Чем больше полос движения доступно на шоссе, тем больше автомобилей можно проехать по нему; чем больше у вас PCIe-линий, тем больше данных можно передать.

Карта PCI Express может устанавливаться и работать в любом слоте PCIe, доступном на материнской плате, если этот слот не меньше платы расширения. Например, вы можете установить карту PCIe x1 в слот PCIe x16. Тем не менее, вы не можете сделать обратное. Например, вы можете установить звуковую карту PCIe x1 в слот PCIe x16, но вы не можете установить графическую карту PCIe x16 в слот PCIe x1.

Какие версии PCI Express существуют, и какую скорость передачи данных (пропускную способность) они поддерживают?

Сегодня используются четыре версии PCI Express: PCI Express 1.0, PCI Express 2.0, PCI Express 3.0 и PCI Express 4.0. Каждая версия PCIe поддерживает примерно удвоенную пропускную способность предыдущего PCIe . Вот что предлагает каждый из них:

  • PCI Express 1.0: имеет пропускную способность 250 МБ / с на линию
  • PCI Express 2.0: имеет пропускную способность 500 МБ / с на линию
  • PCI Express 3.0: имеет пропускную способность 984,6 МБ / с на линию
  • PCI Express 4.0: имеет пропускную способность 1969 МБ / с на линию

Помните, что слоты PCIe могут предложить не одну, а несколько дорожек? Значения полосы пропускания, которые мы разделили, умножаются на количество линий, доступных в слоте PCIe. Если вы хотите рассчитать, сколько пропускной способности доступно для определенной платы расширения, вам нужно умножить пропускную способность PCIe на линию на количество доступных для нее линий.

Например, графическая карта, которая поддерживает PCI Express 4.0 и подключена к слоту PCIe x16, имеет доступ к общей пропускной способности около 31,51 ГБ / с. Это результат умножения 1969 МБ / с на 16 (пропускная способность PCIe на линию * 16 линий). Впечатляет, правда?

Вот как масштабируются версии PCI Express, если принять во внимание линии PCI Express:

В будущем появятся новые версии PCI Express, такие как PCI Express 5.0 и PCI Express 6.0. Спецификация PCIe 5.0 была доработана летом 2019 года, предлагая пропускную способность до 3938 МБ / с на линию и до 63 ГБ / с в конфигурации x16. Однако, скорее всего, мы не увидим его в ближайшее время на компьютерном оборудовании потребительского уровня.

Разъёмы

  • MiniCard (Mini PCIe) — замена форм-фактора Mini PCI

    M.2 — вторая версия Mini PCIe, до x4 PCIe и SATA.

    . На разъём Mini Card выведены шины: x1 PCIe, USB 2.0 и SMBus.

  • ExpressCard — подобен форм-фактору PCMCIA. На разъём ExpressCard выведены шины x1 PCIe и USB 2.0, карты ExpressCard поддерживают горячее подключение.
  • AdvancedTCA, MicroTCA — форм-фактор для модульного телекоммуникационного оборудования.
  • Mobile PCI Express Module (MXM) — промышленный форм-фактор, созданный для ноутбуков фирмой NVIDIA. Его используют для подключения графических ускорителей.
  • Кабельные спецификации PCI Express позволяют доводить длину одного соединения до десятков метров, что делает возможным создание ЭВМ, периферийные устройства которой находятся на значительном удалении.
  • StackPC — спецификация для построения наращиваемых компьютерных систем. Данная спецификация описывает разъёмы расширения StackPC, FPE и их взаимное расположение.

PCI Express X1

Выводы PCI Express X1
№ вывода Назначение № вывода Назначение
B1 +12V A1 PRSNT1#
B2 +12V A2 +12V
B3 +12V A3 +12V
B4 GND A4 GND
B5 SMCLK A5 JTAG2
B6 SMDAT A6 JTAG3
B7 GND A7 JTAG4
B8 +3.3V A8 JTAG5
B9 JTAG1 A9 +3.3V
B10 3.3V__AUX A10 3.3V
B11 WAKE# A11 PERST#
Перегородка
B12 RSVD A12 GND_A12
B13 GND A13 REFCLK+
B14 PETP0 A14 REFCLK-
B15 PETN0 A15 GND
B16 GND A16 PERP0
B17 PRSNT2# A17 PERN0
B18 GND A18 GND

Mini PCI-E

См. также M.2

Mini PCI Express — формат шины PCI Express для портативных устройств.

Для этого стандарта разъёма выпускается много периферийных устройств:

  • WiFi-карты
  • WiMax-карты
  • GSM-модемы
  • GPS-приёмники
  • SSD-накопители — использует нестандартную распиновку разъёма Mini PCI-E (SSD Mini PCI Express)
  • Контроллеры USB (2.0 или 3.0), SATA (I, II или III)
  • Контроллер COM-портов (RS232)
  • SMBus
  • Выводы для индикаторных светодиодов
  • Выводы подключения SIM-карт (для GSM WCDMA)
  • Имеет зарезервированные контакты (для будущих устройств)
  • Питание 1,5 В и 3,3 В
Выводы Mini PCI-E
№ вывода Назначение № вывода Назначение
51 Зарезервировано 52 +3.3 V
49 Зарезервировано 50 GND
47 Зарезервировано 48 +1.5 V
45 Зарезервировано 46 LED_WPAN#
43 Зарезервировано 44 LED_WLAN#
41 Зарезервировано (+3.3 V) 42 LED_WWAN#
39 Зарезервировано (+3.3 V) 40 GND
37 Зарезервировано (GND) 38 USB_D+
35 GND 36 USB_D-
33 PETp0 34 GND
31 PETn0 32 SMB_DATA
29 GND 30 SMB_CLK
27 GND 28 +1.5 V
25 PERp0 26 GND
23 PERn0 24 +3.3 Vaux
21 GND 22 PERST#
19 Зарезервировано (UIM_C4) 20 W_DISABLE#
17 Зарезервировано (UIM_C8) 18 GND
Перегородка
15 GND 16 UIM_VPP
13 REFCLK+ 14 UIM_RESET
11 REFCLK- 12 UIM_CLK
9 GND 10 UIM_DATA
7 CLKREQ# 8 UIM_PWR
5 Зарезервировано (COEX2) 6 1.5 V
3 Зарезервировано (COEX1) 4 GND
1 WAKE# 2 3.3 V

MiniPCI и MiniPCI Express

SSD Mini PCI Express

  • PATA
  • SATA
  • USB
  • Питание 3.3 В
Контакты SSD Mini PCI Express[источник не указан 2632 дня]
33 Sata TX+ 34 GND
31 Sata TX- 32 IDE_DMARQ
29 GND 30 IDE_DMACK
27 GND 28 IDE_IOREAD
25 Sata RX+ 26 GND
23 Sata RX- 24 IDE_IOWR
21 GND 22 IDE_RESET
19 IDE_D7 20 IDE_D8
17 IDE_D6 18 GND
Перегородка
Перегородка
15 GND 16 IDE_D9
13 IDE_D5 14 IDE_D10
11 IDE_D4 12 IDE_D11
9 GND 10 IDE_D12
7 IDE_D3 8 IDE_D13
5 IDE_D2 6 IDE_D14
3 IDE_D1 4 GND
1 IDE_D0 2 IDE_D15

ExpressCard

Слоты ExpressCard применяются в ноутбуках для подключения:

  • Плат SSD накопителей
  • Видеокарт
  • Контроллеров 1394/FireWire (iLINK)
  • Док-станций
  • Измерительных приборов
  • Адаптеров карт памяти (CF, MS, SD, xD, и т. д.)
  • Сетевых адаптеров
  • Контроллеров параллельных и последовательных портов
  • Адаптеров PC Card/PCMCIA
  • Дистанционного управления
  • Контроллеров SATA
  • Адаптеров SmartCard
  • ТВ-тюнеров
  • Контроллеров USB
  • Беспроводных сетевых адаптеров Wi-Fi
  • Беспроводных широкополосных интернет-адаптеров (3G, CDMA, EVDO, GPRS, UMTS, и т. д.)
  • Звуковых карт для домашнего мультимедиа и профессиональных аудиоинтерфейсов.

Применение утеплителя

Декоративную отделку дверного проема не выполняют без использования дополнительных материалов. Когда создаются откосы, необходимо применять утеплитель. Этот этап особенно важен для дверей в частном доме. В многоквартирных домах данная методика обеспечивает снижение теплопотерь.

В виде утеплителя можно использовать пенопласт, пенополистирол или минеральную вату. В некоторых ситуациях слой такого материала установить проблематично, так как сокращается пространство проема. По требованиям СНиП данный показатель должен быть не менее 80х190 см. Если имеющееся пространство не позволяет использовать надежный утеплитель, то можно взять специальные сэндвич панели.

Для слишком широких проемов выполняется отделка проема входной двери по каркасной технологии. Если требуется сократить количество цементной смеси, то используют данный вариант отделки. В каркасных конструкциях внутри есть утеплитель. Из пластика или дерева изготавливается лицевая сторона. Она имеет эстетичный и презентабельный вид.

Применение утеплителя в откосах двери

Как подключить к скважине насосную станцию правильно: важные нюансы

PCIe 5.0 тоже был анонсирован

Если внедрение компонентов PCIe 4.0 не было достаточно сложным, PCI-SIG использовал Computex для анонса PCIe 5.0. Мы получим удвоение пропускной способности с 5.0. Вместо 32 ГБ/с в каждом направлении для слота x16 в PCIe 4.0 мы получим 64 ГБ/с с PCIe 5.0.

Чем быстрее, тем лучше, поэтому мы, вероятно, скоро увидим выход компонентов PCIe 5.0, верно? Может быть, некоторые компании вообще проигнорируют PCIe 4.0?

Ну, не так быстро.

AMD и ее партнеры по производству уже инвестируют в PCIe 4.0, поэтому они могут не захотеть сразу же переходить на новый уровень. Кроме того, преодоление технических проблем, связанных с внедрением PCIe 5.0, должно занять некоторое время.

Мы уже видим, что, например, PCIe 4.0 работает быстрее, чем ПК с PCIe 3.0. Это говорит о том, что мы можем не видеть PCIe 5.0 в течение достаточно долгого времени, поскольку производители компонентов и устройств совершенствуют PCIe 4.0.

С другой стороны, поскольку Intel в настоящее время не поддерживает PCIe 4.0, компания может захотеть перейти сразу к PCIe 5.0, чтобы забрать часть рынка у AMD, но это всего лишь предположение. Пока что ни AMD, ни Intel не проявляют особого интереса к PCIe 5.0, так что мы можем подождать еще несколько лет.

Пока это все о PCIe 4.0 и только для систем на базе AMD.

Как убить жесткий диск. Правила для начинающих киллеров

Рабочие температуры

Хотя это не вполне соответствует теме данного обзора, некоторые читатели интересуются температурными показателями. Я измерил температуру диска в процессе последовательной записи с максимальной скоростью, при котором выделяется наибольшее количество тепла и записывается больший объем данных (в ГБ) по сравнению со случайной записью. В этом тесте диск работал без какого-либо воздушного охлаждения – я отключил вентиляторы чипсета и видеокарты.

Без радиатора диск нагрелся до 100 °C за 30 секунд, и это еще хороший результат – за такое короткое время диск успел записать 120 ГБ данных. После этого начался троттлинг и скорость записи упала до уровня 300-500 МБ/с, то есть нагрев диска до 100 °C означает выход за пределы рабочего диапазона температур.

С радиатором диск Gigabyte в том же режиме максимальной нагрузки нагрелся только до 80 °C, никакого троттлинга не было – очень впечатляющий результат.

Экспорт в Word

Материалы для отделки

Хорошо выполненная отделка входной двери добавит эстетичности, аккуратности и законченности помещению. Многих сегодня волнует, как максимально качественно осуществить отделку входной двери. Какой выбрать материал, текстуру или цвет?

Главной задачей является достижение такого результата, который бы позволил входной двери со стороны жилища максимально гармонично и естественно вписаться в реализованную дизайнерскую идею прихожей.

Перед тем, как приступить к выбору материала для отделки около пространства входной двери, необходимо учесть ряд общих требований или пожеланий. Например, в ситуации, когда двери из комнат выходят в прихожую, есть смысл сделать входную дверь немного отличающейся от остальных. Ведь входная дверь — основная.

Если прихожая не слишком просторная, а то и тесная, можно рассмотреть вариант зеркального исполнения входной двери. Такой вариант не только создаст иллюзию увеличения пространства, но и с эстетической точки зрения будет смотреться очень эффектно. Правда, такое решение реализовывать не рекомендуется, если в жилище есть маленькие дети.

Также немаловажным моментом при выборе типа отделки входной двери является необходимость выполнить утепление конструкции. Утеплитель лучше укладывать с внутренней стороны, так как в противном случае материал не прослужит слишком долго. В первую очередь это правило касается общих лестничных клеток и частных домов.

Помимо этого, нельзя забывать и об отделке дверного проема. Учитывая тот факт, что жилые помещения, как правило, характеризуются стабильностью и постоянством внутренних температур, входную дверь можно облицевать сайдингом, штукатуркой, декоративным каменем или вагонкой.

Это интересно: Как облагородить старые межкомнатные двери: читаем по пунктам

Старые материнские платы не получат PCIe 4.0

Новые процессоры AMD по-прежнему используют сокет AM4, как и предыдущие поколения Ryzen. Это означает, что новые чипы Ryzen 3000 могут быть встроены в материнские платы, созданные для процессоров Ryzen 2000, таких как материнские платы X470 и B450; однако, чтобы получить PCIe 4.0, Вам нужна более новая материнская плата, созданная для нового стандарта.

Это может стать сюрпризом для некоторых поклонников PCIe, поскольку производители материнских плат уже выпустили обновления встроенного программного обеспечения, обеспечивающие ограниченную поддержку PCIe 4.0 для старых плат. Проблема в том, что эти обновления работают только с определенными материнскими платами, которые могут справиться со строгими требованиями PCIe 4.0. Даже тогда ожидается, что обновление будет работать только с верхним слотом PCIe x16 (который обычно используется для видеокарт) и, возможно, с некоторыми слотами M.2.

AMD решила, что эти обновления были слишком сложной процедурой для обычного человека. Чтобы избежать путаницы, компания остановила их. Вы все еще можете найти некоторые обновления материнской платы в сети, которые переносят PCIe 4.0 на старые материнские платы, но они не рекомендуются. Если Вы хотите PCIe 4.0, лучший план — это приобрести новую материнскую плату и новый процессор.

Помимо процессоров Ryzen 3000 и материнских плат X570, Corsair также анонсировала Corsair MP600, SSD-накопитель M.2 NVMe, поддерживающий PCIe 4.0, со скоростью чтения почти 5000 МБ/с.

Для сравнения, производительность высокопроизводительного накопителя PCIe 3.0 M.2 NVMe составляет около 3500 Мбит/с. Новый M.2 от Corsair также имеет радиатор, чтобы держать его в прохладе. MP600 будет выпущен в июле.

Gigabyte анонсировала твердотельный накопитель Aorus NVMe Gen 4 с такой же скоростью чтения, как у Corsair MP600. Вместо большого радиатора SSD от Gigabyte поставляется с медным распределителем тепла в корпусе. Gigabyte не сказала точно, когда будет запущен SSD, но компания говорит, что он скоро появится.

Patriot, также планирует выпустить твердотельные накопители PCIe 4.0 позже в 2019 году.

Особенности стандарта PCI Express, его версии

Разработка стандарта PCI Express была начата фирмой Intel. Спецификации первой его версии появились еще в 2002 году. Сейчас развитием PCI Express занимается организация PCI Special Interest Group, в совет директоров которой входят представители основных разработчиков аппаратного и программного обеспечения (Intel, Microsoft, IBM, AMD, Sun Microsystems, HP, NVIDIA и другие). В своем развитии PCIe прошел несколько этапов и уже развился до версии 5.0. PCIe является полнодуплексным протоколом, то есть предусматривает использование независимых друг от друга каналов приёма и передачи данных (устройство может одновременно отправлять и получать данные). Перед отправкой данные кодируются в блоки. Это необходимо для синхронизации передающего и принимающего устройств, а также уменьшения влияния помех. В версиях PCIe 1.0 и PCIe 2.0 используется схема кодирования8b/10b . То есть, каждый 8-битный блок кодируется в 10-битный, в котором только 80% передаваемых данных являются полезными. Остальные 20% нужны для обеспечения правильной работы протокола. В PCIe 3.0 и боле новых ее версиях данные кодируются по более эффективной схеме128b/130b (каждые 128 бит кодируются в 130-битный блок). Доля полезного содержания в передаваемых данных здесь составляет уже около 98,46%. Разные версии PCIe отличаются не только способом «упаковки» битов в блоки, но и частотой передачи данных. В PCIe 1.0 она составляет 2,5 ГТ/с (гигатранзакций в секунду), то есть за одну секунду передается 2,5 миллиарда битов. Для лучшего восприятия переведем это в привычные единицы:2,5*109 Бит / с = 312,5‬ Мегабайт / с. Учитывая, что только 80% из них являются полезными данными, реальная пропускная способность PCIe 1.0 составляет 250 Мегабайт / с. В PCIe 5.0 частота передачи данных возросла аж до 32 ГТ/с. Переведем это в удобный вид:32*109 Бит / с = 4000‬ Мегабайт / с = 4 Гигабайт / с. Поскольку полезные данные составляют 98,46%, реальная пропускная способность PCIe 5.0 равна 3,938 Гигабайт / с. Подробнее об особенностях разных версиях PCIe см. в таблице:

Версия PCI Express Год выхода Схема кодирования Скорость передачи Пропускная способность на x линий:
x1 x4 x8 x16
PCIe 1.0 2002 8b/10b 2,5 ГТ/с 250 Мб/с 1 Гб/с 2 Гб/с 4 Гб/с
PCIe 2.0 2007 8b/10b 5 ГТ/с 500 Мб/с 2 Гб/с 4 Гб/с 8 Гб/с
PCIe 3.0 2010 128b/130b 8 ГТ/с 984,6 Мб/с 3,94 Гб/с 7,88 Гб/с 15,8 Гб/с
PCIe 4.0 2017 128b/130b 16 ГТ/с 1,969 Гб/с 7,88 Гб/с 15,8 Гб/с 31,5 Гб/с
PCIe 5.0 2019 128b/130b 32 ГТ/с 3,938 Гб/с 15,75 Гб/с 31,5 Гб/с 63 Гб/с

Описание протокола

Видеокарта для PCI Express x16

Для подключения устройства PCI Express используется двунаправленное последовательное соединение типа точка-точка, называемое линией (англ. lane — полоса, ряд); это резко отличается от PCI, в которой все устройства подключаются к общей 32-разрядной параллельной двунаправленной шине.

Соединение (англ. link — связь, соединение) между двумя устройствами PCI Express состоит из одной (x1) или нескольких (x2, x4, x8, x16 и x32) двунаправленных последовательных линий. Каждое устройство должно поддерживать соединение, по крайней мере, с одной линией (x1).

На электрическом уровне каждое соединение использует низковольтную дифференциальную передачу сигнала (LVDS), приём и передача информации производится каждым устройством PCI Express по отдельным двум проводникам, таким образом, в простейшем случае устройство подключается к коммутатору PCI Express всего лишь четырьмя проводниками.

Использование подобного подхода имеет следующие преимущества:

  • карта PCI Express помещается и корректно работает в любом слоте той же или большей пропускной способности (например, карта x1 будет работать в слотах x4 и x16);
  • слот большего физического размера может использовать не все линии (например, к слоту x16 можно подвести проводники передачи информации, соответствующие x1 или x8, и всё это будет нормально функционировать; однако при этом необходимо подключить все проводники питания и заземления, необходимые для слота x16).

В обоих случаях на шине PCI Express будет использоваться максимальное количество линий, доступных как для карты, так и для слота. Однако это не позволяет устройству работать в слоте, предназначенном для карт с меньшей пропускной способностью шины PCI Express. Например, карта x4 физически не поместится в стандартный слот x1, несмотря на то, что она могла бы работать в слоте x1 с использованием только одной линии. На некоторых материнских платах можно встретить нестандартные слоты x1 и x4, у которых отсутствует крайняя перегородка, таким образом, в них можно устанавливать карты большей длины, чем разъём. При этом не обеспечивается питание и заземление выступающей части карты, что может привести к различным проблемам.

PCI Express пересылает всю управляющую информацию, включая прерывания, через те же линии, что используются для передачи данных. Последовательный протокол никогда не может быть заблокирован, таким образом задержки шины PCI Express вполне сравнимы с таковыми для шины PCI (заметим, что шина PCI для передачи сигнала о запросе на прерывание использует отдельные физические линии IRQ#A, IRQ#B, IRQ#C, IRQ#D).

Во всех высокоскоростных последовательных протоколах (например, гигабитный Ethernet) информация о синхронизации должна быть встроена в передаваемый сигнал. На физическом уровне PCI Express использует метод канального кодирования 8b/10b (8 бит в десяти, избыточность — 20 %) для устранения постоянной составляющей в передаваемом сигнале и для встраивания информации о синхронизации в поток данных. Начиная с версии PCI Express 3.0 используется более экономное кодирование 128b/130b с избыточностью 1,5 %.

Некоторые протоколы (например, SONET/SDH) используют метод, который называется скремблинг (англ. scrambling) для встраивания информации о синхронизации в поток данных и для «размывания» спектра передаваемого сигнала. Спецификация PCI Express также предусматривает функцию скремблинга, но скремблинг PCI Express отличается от такового для SONET.

Применение PCI Express в компьютере. Разъемы PCI Express

Контроллер (управляющее устройство) линий PCIe не так давно встраивался только в чипсет (главную микросхему) материнской платы. Но, начиная с 2009 года, контроллер PCIe добавляется производителями также и непосредственно в центральный процессор. Это уменьшает задержки и позволяет процессору более эффективно взаимодействовать с другими устройствами. Версии и количество линий PCIe в разных моделях процессоров и чипсетов отличается. Бо́льшая их часть формируется в разъемы, размещаемые на материнской плате. Они позволяют подключать к компютеру разнообразные устройства (видеокарты, звуковые карты, сетевые карты, Wi-Fi-адаптеры и др.). На материнской плате современного компьютера можно найти разъемы PCIe нескольких видов, отличающихся количеством используемых в них линий PCIe (от х1 до х16 линий). Не зависимо от того, насколько старым является компьютер, и какая версия PCIe в нем используется, эти разъемы всегда выглядят одинаково:на изображении: верхний разъем — PCIe x4, по средине — PCIe x16, внизу — PCIe x1

Разные версии PCIe являются полностью совместимыми. То есть, если в старый компьютер, где используется версии PCIe 2.0, установить, например, видеокарту с PCIe 4.0, она будет нормально работать. Однако, реальная скорость обмена данными при этом у нее будет ограничена возможностями PCIe 2.0. И наоборот, в самый новый компьютер с PCIe 4.0 можно без проблем установить старую видеокарту с PCIe 2.0. Еще одной особенностью PCIe является совместимость разных ее разъемов. В разъем PCIe x16 можно подключить не только видеокарту, но и абсолютно любое другое устройство PCIe, в том числе и с разъемом PCIe x8, PCIe x4 или PCIe x1. Совместимость разъемов сохраняется также и в обратную сторону. То есть, в разъем PCIe x1 можно установить видеокарту с разъемом PCIe x16. Физически она туда не войдет, но если разрезать заднюю стенку разъема (как на изображении ниже), то все получится. Это, конечно же, «кустарщина» и без крайней надобности так делать не нужно. Тем более, что видеокарта при таком подключении будет работать в режиме PCIe x1, что весьма негативно скажется на ее быстродействии.

В ноутбуках для установки дополнительных устройств вместо упомянутых выше разъемов используется более компактный вариант — Mini PCIe. Линии PCIe используются также для создания некоторых других разъемов, в чатности, разъемов M.2 (служат для подключения современных запоминающих устройств, а также устройств некоторых других типов).

на изображении — разъем M.2 с запоминающим устройством в нем

Обманка с фирменными утилитами и технологиями

Всё богатство фантазии маркетологов проявляется в придумывании фирменных технологий и утилит. Сейчас во всех материнских платах применяются фирменные технологии производителя, и, конечно же, все они комплектуются фирменными утилитами.

На самом деле фирменная технология — это, за редким исключением, маркетинговая «утка». Как правило, придумывается оригинальное название, под которым скрывается отнюдь не фирменная технология. Классический пример — технология динамического переключения фаз питания процессора. У каждого производителя есть свое название этой технологии, которая реализуется у всех одинаково, а разработана была компанией Intel. И таких примеров можно привести очень много. Пожалуй, рекордсменом здесь можно считать компанию ASRock, которая «наклепала» целую кучу фирменных, правда довольно сомнительных, технологий. ASRock XFast USB, XFast RAM, XFast LAN — вот лишь некоторые из тех фирменных технологий, которые применяет в своих платах компания ASRock. Понятно, что речь в данном случае идет не о технологиях, а о программных утилитах, которые привязаны к «железу». Как следует из названия, утилита ASRock XFast USB предназначена для ускорения работы подключаемого USB-накопителя, XFast RAM — для ускорения работы оперативной памяти, а XFast LAN — для ускорения работы в Сети. Загвоздка лишь в том, что нигде не поясняется, как именно работают эти утилиты, что, конечно же, вызывает к ним серьезное недоверие.

К примеру, по заявлению производителя, утилита ASRock XFast USB способна существенно увеличить скорость передачи данных по интерфейсу USB 2.0 или USB 3.0. Сразу же возникает резонный вопрос: если бы такое было действительно возможно, причем исключительно программным способом, то неужели бы производители USB-контроллеров не реализовали это в своих драйверах? На самом деле утилита ASRock XFast USB является разработкой компании FNet Corporation и известна также под названием FNet TurboHDD USB. Раньше эта утилита использовалась некоторыми производителями внешних USB-дисков и флэшек в продуктах, но широкого распространения так и не получила, в настоящее время производители USB-дисков и флэшек ее практически не применяют (интересно, кстати, почему).

Если тестировать утилиту ASRock XFast USB не с помощью синтетических тестов (типа IOmeter), а измерять реальную скорость копирования данных по USB-интерфейсу, то выясняется, что она не только не увеличивает скорость передачи данных, а, наоборот, уменьшает ее. Печально, но с реальными тестами не поспоришь.

Что ж, пойдем дальше. Все производители материнских плат комплектуют свои изделия фирменными утилитами для настройки, разгона и мониторинга системы. Но проблема в том, что в большинстве случаев эти утилиты работают, увы, некорректно. Ни одна из них не позволит разогнать процессор так, как это можно сделать в настройках BIOS. Показания таких утилит относительно температуры процессора и его энергопотребления вызывают сильное недоверие.

Пожалуй, полезны только утилиты для управления скоростью вращения вентилятора кулера процессора. Правда, они есть далеко не у каждого производителя. Если точнее, то правильно реализованы такие утилиты на платах компаний ASUS и GIGABYTE.

Так что ко всем фирменным утилитам тоже стоит относиться скептически.

Суммарные показатели производительности

По результатам проведенных тестов разница между PCI-Express 4.0 и PCI-Express 3.0 в реальных приложениях составила всего 1%. Однако, если мы посмотрим на устаревающую версию интерфейса PCI-Express 2.0, то увидим заметно большую разницу – целых 4%.

Одна из наиболее популярных моделей SSD с PCIe 3.0 – диск ADATA SX8200 Pro с контроллером SMI. Несмотря на более слабую версию интерфейса (Gen3), он все-таки смог превзойти SSD Gigabyte Gen4.

Отдельного внимания заслуживает результат этого же диска, выделенный серым цветом (с пометкой «Intel»). Этот результат получен в составе системной конфигурации с процессором Core i7-7700K, которую мы обычно используем для тестирования SSD. И хотя сравнение здесь не совсем корректное (с точки зрения соответствия друг другу отдельных компонентов каждой тестовой конфигурации), данный пример наглядно показывает, насколько сильно на производительность накопителя может повлиять апгрейд системы – в той ее части, которая вообще не относится к подсистеме хранения данных, – гораздо сильнее, чем апгрейд самого накопителя до SSD с интерфейсом PCIe 4.0.

Внешний вид

Накопитель собран на стандартной пластине черного текстолита форм-фактора М.2 размером 2280 с ключом M-Key.

Все элементы с двух сторон заклеены информационными бумажными стикерами, которые перед эксплуатацией следует удалить.

Сняв стикеры, мы видим, что кристаллы памяти расположены с обеих сторон текстолита, что очень редко встречается в накопителях М.2.

Но это не сказывается значительно на толщине самого накопителя, тем более что для установки в ПК это не имеет значения.

Память промаркирована как TA7AG65AWV – это разработки Toshiba на базе 96-слойной 3D TLC BiCS4 с интерфейсом Toggle NAND Mode 3.0, который работает со скоростью 667-800 Мбит/с при напряжении 1,2 В.

Для SLC-кэширования используется оперативная память объемом 512 Мбайт DDR4-1600 SDRAM производства SK Hynix – HSAN4G8N8JR. Это должно способствовать более высокому потенциалу при последовательной записи большего объема данных на максимально заявленной скорости.

Еще мы видим микросхему IC Phison PS6106, осуществляющую управление питанием и защиту по току.

Контроллер Phison PS5016-E16 закрыт собственной металлической теплоотводящей пластиной. Пластина здесь не лишняя — несмотря на напряжение, уменьшенное до 1,2 В, тепловыделение кристалла под нагрузкой составляет 6,7 Вт.

Это — восьмиканальный контроллер на 28-нм техпроцессе, который обеспечивает пропускную способность до 8 ГБ/с. Он имеет скорость последовательного чтения до 5000, последовательной записи — до 4400 МБ/с. Кроме стандартных функций (технология ускоренной записи, алгоритм LDPC-кодирования и исправления ошибок четвёртого поколения, аппаратное шифрование по схеме AES256), контроллер способен контролировать температуру, что позволяет избежать троттлинга.

Для эффективного отведения тепла в комплекте имеется металлический радиатор со сложным рисунком ребер.

В центральной части верхняя площадка ребер выполнена в виде логотипа IRDM и окрашена в красный цвет. На контактной площадке наклеен термоскотч.

Высота радиатора — 8 мм. Если слот PCI-E находится под видеокартой, то радиатор установить не получится. Но чаще всего он может вообще не понадобиться.

Материнские платы на чипсете Х570, как правило, комплектуются собственными радиаторами над слотами M.2.

В чем разница между PCI Express 3.0 и 4.0

Основная разница между PCI Express 3.0 и 4.0 заключается в скорости передачи данных. Каждая версия PCI Express получает удвоение пропускной способности и 4-я версия не исключение. При использовании 16 линий через PCI-e 4.0 можно передавать данные со скоростью31,5 ГБайт/с, что в два раза больше, чем при использовании версии 3.0.

Год Версия Пропускная способность (на 16 линий)
2002 1.0 4,0 Гбайт/с
2007 2.0 8,0 Гбайт/с
2010 3.0 15,8 Гбайт/с
2017 4.0 31,5 Гбайт/с

Разница в пропускной способности выглядит впечатляюще, но многим устройствам такая большая скорость на данный момент не нужна. Поэтому реальный прирост производительности может быть намного меньше.

Например, в таблице внизу приведены результаты видеокарты Radeon RX 5700 XT при ее подключении с помощью PCI-e 3.0 и PCI-e 4.0. Как видно, более высокая пропускная способность PCI-e 4.0 практически не влияет на производительность видеокарты в играх.

Средний FPS на максимальных настройках в FullHD
PCI-e 3.0 PCI-e 4.0
Shadow of the Tomb Raider 104 105
Gears 5 100 101
Red Dead Redemption 2 66 66
Metro Exodus 52 52
Borderlands 3 82 83
The Division 2 101 101
Assassin’s Creed Odyssey 64 64

С другой стороны, твердотельные диски (SSD) очень чувствительны к скорости подключения и в этом случае разница между PCI Express 3.0 и PCI Express 4.0 более заметна.

Например, в таблице внизу приведены результаты двух похожих SSD накопителей: FireCuda 510 и FireCuda 520. Первый из которых использует интерфейс PCI-e 3.0, а второй PCI-e 4.0.

FireCuda 510 2 Тбайт FireCuda 520 2 Тбайт
PCI-e 3.0 PCI-e 4.0
Последовательное чтение 3450 Мбайт/с 5000 Мбайт/с
Последовательная запись 3200 Мбайт/с 4400 Мбайт/с

Как видно, при последовательном чтении прирост производительности почти полуторакратный. В новых SSD, которые будут выпускаться под PCI-e 4.0 эта разница может быть еще существенней.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector