Как сделать импульсный блок питания своими руками

ИБП

Описание

В продолжительной поездке на личном автомобиле или отдыхая «дикарем» на природе, неплохо иметь с собой домашние электрооборудование, например, фен, электрическую бритву, фото или видеокамеру. Но из-за отсутствия розеток невозможно обеспечить питание приборов от обычной сети.

Единственным источником энергии в этом случае могут быть только автомобильные аккумуляторы, но их постоянного напряжения в 12 вольт не хватит для домашних устройств, работающих от переменного тока 220 вольт. Налицо полная несовместимость по сразу двум основным параметрам.

Но не стоит отчаиваться, выход из такой ситуации есть – это использование небольшого импульсного преобразователя тока. Он поможет превратить «воду в вино», то есть 12 вольт напряжения аккумулятора, в ток, требуемый для работы всех приборов − 220 вольт.

Принцип работы

Принцип его работы заключается в конвертировании переменного напряжения из электросети, имеющее частоту 50 Гц в аналогичное прямоугольного типа. Затем оно подвергается трансформации для достижения определенных значений, выпрямляется и отфильтровывается. Такой транзистор повышенной мощности, исполняющий одновременно роль импульсного трансформатора и ключа, преобразует напряжение тока.

По схеме они бывают двух типов: управляемые извне, внедрены в большинстве электроприборов и автогенераторы импульсного типа.

Также такие трансформаторы выпускаются разных размеров и мощностей в зависимости от специфики применения, но габариты в них не главное так, как эффективность таких устройств повышается по мере нарастания частоты, увеличение которой позволяет серьезно уменьшить размер и вес стального сердечника. Они, как правило, работают в частотном диапазоне от 18 до 50 кГц.

Область применения

Область применения импульсных преобразователей питания для бытового использования постоянно ширится. Они сегодня используются для обеспечения энергией всех приборов бытовой и вычислительной техники, а также в устройствах бесперебойного питания и зарядных устройствах для АКБ разного назначения, питания низковольтных осветительных систем и других нужд.

Часто приобретение такого устройства заводской сборки не очень оправдано, по соображениям экономии или с точки зрения специфики технических параметров требуемого агрегата. В этом случае собственноручное сооружение импульсного преобразователя может быть лучшим вариантом. Такой подход, как правило, более рационален благодаря широкому выбору недорогих комплектующих.

Основные схемы силовой части

По схеме силовой части импульсные стабилизаторы делят обычно на три основных типа: понижающие, повышающие и инвертирующие. Такое разделение сложилось, в частности, в отечественной технической литературе.

Некоторые авторы, рассматривая схемы импульсных преобразователей постоянного напряжения во всём их многообразии, показывают, что число элементарных базовых схем преобразователя можно свести к двум — понижающего типа и повышающего типа. Также отмечается, что другие схемы импульсного преобразователя напряжения (в том числе инвертирующего преобразователя) могут быть получены каскадным соединением этих двух базовых схем[неавторитетный источник?].

В нижеприведённых схемах в качестве ключа S могут использоваться полевой транзистор, биполярный транзистор или тиристор, цепь управления ключом для простоты не показана. Отношение времени замкнутого состояния ключа к сумме длительностей замкнутого и разомкнутого состояний называют коэффициентом заполнения (или рабочим циклом — англ. duty cycle).

Преобразователь с понижением напряжения

Преобразователь с понижением напряжения

Названия в англоязычной литературе — buck converter (step-down converter). Если ключ S замкнут, то диод D закрыт, и через дроссель L течёт нарастающий ток от источника. Когда ключ размыкается, ток дросселя, который не может измениться мгновенно, начинает протекать через диод D, при этом величина тока уменьшается. При достаточной индуктивности ток дросселя не успевает уменьшиться до нуля к началу следующего цикла (режим неразрывных токов) и имеет пульсирующий характер. Поэтому даже при отсутствии конденсатора C напряжение на нагрузке R будет иметь такой же характер с пульсациями, размах которых тем меньше, чем больше индуктивность дросселя. Однако, на практике увеличение индуктивности связано с увеличением габаритов, массы и стоимости дросселя и потерь мощности в нём, поэтому использование конденсатора для уменьшения пульсаций более эффективно. Сочетание элементов L и C в этой схеме часто называют фильтром.

Преобразователь с повышением напряжения

Преобразователь с повышением напряжения

Названия в англоязычной литературе — boost converter (step-up converter). Если ключ S замкнут, то диод D закрыт, и через дроссель L течёт линейно нарастающий ток от источника. Когда ключ размыкается, ток дросселя, который не может измениться мгновенно, начинает протекать через диод D и конденсатор C (заряжая его). К началу следующего цикла практически линейно спадающий ток через конденсатор может уменьшиться до нуля, однако приложенное к нагрузке R напряжение конденсатора почти постоянно — амплитуда пульсаций тем меньше, чем больше ёмкость конденсатора. В отличие от предыдущей схемы, здесь дроссель не является элементом фильтра. Напряжение на нагрузке всегда больше напряжения источника.

Инвертирующий преобразователь

Инвертирующий преобразователь

Название в англоязычной литературе — buck-boost converter (то есть «понижающе-повышающий преобразователь»). Основное отличие от предыдущей схемы состоит в том, что цепь D, R, C подключена параллельно дросселю, а не параллельно ключу. Принцип работы схемы похожий. Если ключ S замкнут, то диод D закрыт, и через дроссель L течёт линейно нарастающий ток от источника. Когда ключ размыкается, ток дросселя, который не может измениться мгновенно, начинает протекать через конденсатор C (заряжая его) и диод D. К началу следующего цикла практически линейно спадающий ток через конденсатор может уменьшиться до нуля, однако приложенное к нагрузке R напряжение конденсатора почти постоянно — амплитуда пульсаций тем меньше, чем больше ёмкость конденсатора (дроссель не является элементом фильтра). Напряжение на нагрузке может быть как больше, так и меньше напряжения источника.

Влияние диода на КПД

Прямое падение напряжения для обычных кремниевых диодов составляет около 0,7 В, для диодов Шоттки — около 0,4 В. Мощность, рассеиваемая в диоде при больших токах, существенно снижает КПД, особенно в стабилизаторах с низким выходным напряжением. Поэтому в таких стабилизаторах диод часто заменяют дополнительным полупроводниковым ключом с низким падением напряжения в открытом состоянии, например, силовым полевым транзистором.

Во всех трёх описанных схемах диод D может быть заменён на дополнительный ключ, замыкаемый и размыкаемый в противофазе к основному ключу.

⇡#Дежурное питание +5VSB

Описание компонентов блока питания было бы неполным без упоминания об источнике дежурного напряжения 5 В, который делает возможным спящий режим ПК и обеспечивает работу всех устройств, которые должны быть включены постоянно. «Дежурка» питается от отдельного импульсного преобразователя с маломощным трансформатором. В некоторых БП встречается и третий трансформатор, использующийся в цепи обратной связи для изоляции ШИМ-контроллера от первичной цепи основного преобразователя. В других случаях эту функцию выполняют оптопары (светодиод и фототранзистор в одном корпусе).

Трансформаторы (Corsair HX750i)

Регулируемый/однотактный/двухтактный/двухполярный блок своими руками

Для сборки регулируемого блока питания необходимо в его схеме сборки использовать один или два транзистора полупроводникового типа. Однако для контроля напряжения понадобится установить датчик в виде вольтметра. Тогда ориентируясь на его показания, можно будет отрегулировать оптимальное напряжение на выходе для работы разных приборов, чтобы не пожечь их. Напряжение регулируется при помощи резистора переменного типа.
В самом простом однотактном блоке ток преобразуется за счет работы одного транзистора, который открывается и закрывается, пропуская импульсы определенной частоты.
Его усовершенствованной модификацией, работающей с удвоенной частотой и соответственно лучшим КПД, является двухтактный преобразователь, в котором друг за другом открываются и закрываются уже два транзистора.
Двухполярная конструкция блока еще сложнее, так как необходим монтаж операционного усилителя и стабилитронов

Особое внимание в этом случае следует уделять качеству пайки и соответствию сечения проводов току.

Примечания и советы

  1. Если мощность всего около 200 Вт, то резистор, задающий порог защиты R10, должен быть 0,33 Ом 5 Вт. Если он будет в обрыве, или сгорит, сгорят все транзисторы, а также микросхема.
  2. Сетевой конденсатор выбирается из расчета: 1-1,5 мкФ на 1 Вт мощности блока.
  3. В данной схеме частота преобразования примерно 63 кГц, и в ходе эксплуатации, наверное, лучше для кольца марки 2000НМ, частоту уменьшить до 40-50 кГц, так как предельная частота, на которой кольцо работает без нагрева – 70-75 кГц. Не стоит гнаться за большой частотой, для данной схемы, и кольца марки 2000НМ, будет оптимально 40-50 кГц. Слишком большая частота приведет к коммутационным потерям на транзисторах и значительных потерях на трансформаторе, что вызовет его значительный нагрев.
  4. Если у вас на холостом ходу при правильной сборке греется трансформатор и ключи, попробуйте снизить емкость конденсатора снаббера С10 с 1 нФ до 100-220 пкФ. Ключи нужно изолировать от радиатора. Вместо R1 можно использовать термистор с БП АТХ.

Вот конечные фото проекта блока питания:

Всем удачи! Специально для Радиосхем — с вами был Alex Sky.

Импульсные блоки питания

Импульсные блоки питания имеют сложную конструкцию и являются устройствами инверторного типа. Их ключевое отличие от обычных заключается в том, что входное напряжение подаётся сразу на выпрямитель. Затем оно формирует импульсы определённой частоты. За это отвечает отдельная подсистема управления, так что импульсные БП являются полноценными цифровыми устройствами.

Поскольку импульсные БП отличаются конструкционной и принципиальной сложностью, рассматривать схему их работы в рамках этой статьи не целесообразно. и

  1. Ток из сети поступает на сетевой фильтр, минимизирующий входящие и исходящие искажения;

  2. Преобразователь трансформирует синусоиду переменного тока в импульсный постоянный ток;

  3. Инвертор, контролируемый через модуль управления, формирует из импульсного постоянного тока прямоугольные высокочастотные сигналы;

  4. Ток поступает на импульсный трансформатор, который подаёт напряжение на различные элементы самого БП, а также на нагрузку;

  5. После этого ток поступает на выходной выпрямитель, а затем сглаживается на выходном фильтре.

Такая система обеспечивает не только высокий коэффициент полезного действия, но и малые размеры устройства. Причём чем выше частота импульсов – тем компактнее БП за счёт уменьшения габаритов трансформатора.

Ключевые достоинства импульсных блоков питания:

  1. Высокий КПД, составляющий, как правило, около 98%. Небольшие потери создаются их-за переходных процессов, возникающих при переключении ключа. Но они слишком незначительны, чтобы брать их в расчёт;

  2. Компактные размеры и малый вес. Это достигается за счёт того, что импульсным БП не требуется массивный трансформатор.

Ключевые недостатки импульсных блоков питания:

  1. Конструкционная сложность. Собрать такое устройство в домашних условиях без знаний в области электроники или электротехники практически невозможно;

  2. Заметный нагрев при работе. Поэтому высокомощные импульсные БП оснащаются дополнительными системами охлаждения, которые приводят к увеличению размера и массы устройства;

  3. Наличие высокочастотных помех. Как следствие, для использования в чувствительной аппаратуре такие блоки питания оснащаются фильтром помех, но и он не даёт 100% защиты от такого «мусорного сигнала»;

  4. Мощность нагрузки должна входить в номинальный диапазон. При превышении или понижении её будут наблюдаться изменения выходного напряжения. Как правило, производители предусматривают это явление и устанавливают защиту от подобных нештатных ситуаций.

Компактные размеры и высокое значение КПД помогли импульсным БП распространиться максимально широко. Сегодня они применяются в зарядных устройствах мобильной электроники, компьютерной и бытовой техники, а также в системах электронного балласта осветительных приборов.

Функциональные схемы по типу цепи управления

Импульсный стабилизатор напряжения представляет собой систему автоматического регулирования. Задающим параметром для контура регулирования служит опорное напряжение, которое сравнивается с выходным напряжением стабилизатора. В зависимости от сигнала рассогласования устройство управления изменяет соотношение длительностей открытого и закрытого состояния ключа.

В представленных ниже структурных схемах можно выделить три функциональных узла: ключ (1), накопитель энергии (2) (который иногда называют фильтром) и цепь управления. При этом ключ (1) и накопитель энергии (2) вместе образуют силовую часть стабилизатора напряжения, которая вместе с цепью управления образуют контур регулирования. По типу цепи управления различают три схемы.

С триггером Шмитта

Структурная схема стабилизатора напряжения с триггером Шмитта

Дополнительные сведения: Триггер Шмитта

Стабилизатор напряжения с триггером Шмитта называется также релейным или стабилизатором с двухпозиционным регулированием. В нём выходное напряжение сравнивается с нижним и верхним порогами срабатывания триггера Шмитта (4 и 3) посредством компаратора (4), который обычно является входной частью триггера Шмитта. При замкнутом ключе (1) входное напряжение поступает на накопитель энергии (2), выходное напряжение нарастает, и после достижения верхнего порога срабатывания Umax триггер Шмитта переключается в состояние, размыкающее ключ (1). Накопленная энергия расходуется в нагрузке, при этом напряжение на выходе стабилизатора спадает, и после достижения нижнего порога срабатывания Umin триггер Шмитта переключается в состояние, замыкающее ключ. Далее описанный процесс периодически повторяется. В результате на выходе образуется пульсирующее напряжение, размах пульсаций которого зависит от разности порогов срабатывания триггера Шмитта.

Такой стабилизатор характеризуются сравнительно большой, принципиально неустранимой пульсацией напряжения на нагрузке и переменной частотой преобразования, зависящей как от входного напряжения, так и от тока нагрузки.

С широтно-импульсной модуляцией

Структурная схема стабилизатора напряжения с ШИМ

Дополнительные сведения: Широтно-импульсная модуляция

Как и в предыдущей схеме, в процессе работы накопитель энергии (2) или подключён к входному напряжению, или передаёт накопленную энергию в нагрузку

В результате на выходе имеется некоторое среднее значение напряжения, которое зависит от входного напряжения и скважности импульсов управления ключом (1). на операционном усилителе (4) сравнивает выходное напряжение с опорным напряжением (6) и усиливает разность, которая поступает на модулятор (3)

Если выходное напряжение меньше опорного, то модулятор увеличивает отношение времени открытого состояния ключа к периоду тактового генератора (5). При изменении входного напряжения или тока нагрузки скважность импульсов управления ключом изменяется таким образом, чтобы обеспечить минимальную разность между выходным и опорным напряжением.

В таком стабилизаторе частота преобразования не зависит от входного напряжения и тока нагрузки и определяется частотой тактового генератора.

С частотно-импульсной модуляцией

Дополнительные сведения: Частотно-импульсная модуляция

При этом способе управления импульс, открывающий ключ, имеет постоянную длительность, а частота следования импульсов зависит от сигнала рассогласования между опорным и выходным напряжениями. При увеличении тока нагрузки или снижении входного напряжения частота увеличивается. Управление ключом может осуществляться, например, с помощью моностабильного мультивибратора (одновибратора) с управляемой частотой запуска.

⇡#Фильтр ЭМП

Фильтр на входе БП служит для подавления двух типов электромагнитных помех: дифференциальных (differential-mode) – когда ток помехи течет в разные стороны в линиях питания, и синфазных (common-mode) – когда ток течет в одном направлении.

Дифференциальные помехи подавляются конденсатором CX (крупный желтый пленочный конденсатор на фото выше), включенным параллельно нагрузке. Иногда на каждый провод дополнительно вешают дроссель, выполняющий ту же функцию (нет на схеме).

Фильтр синфазных помех образован конденсаторами CY (синие каплевидные керамические конденсаторы на фото), в общей точке соединяющими линии питания с землей, и т.н. синфазным дросселем (common-mode choke, LF1 на схеме), ток в двух обмотках которого течет в одном направлении, что создает сопротивление для синфазных помех.

Схема фильтра электромагнитных помех

В дешевых моделях устанавливают минимальный набор деталей фильтра, в более дорогих описанные схемы образуют повторяющиеся (полностью или частично) звенья. В прошлом нередко встречались БП вообще без фильтра ЭМП. Сейчас это скорее курьезное исключение, хотя, покупая совсем дешевый БП, можно, все-таки нарваться на такой сюрприз. В результате будет страдать не только и не столько сам компьютер, сколько другая техника, включенная в бытовую сеть, – импульсные БП являются мощным источником помех.

В районе фильтра хорошего БП можно обнаружить несколько деталей, защищающих от повреждения само устройство либо его владельца. Почти всегда есть простейший плавкий предохранитель для защиты от короткого замыкания (F1 на схеме). Отметим, что при срабатывании предохранителя защищаемым объектом является уже не блок питания

Если произошло КЗ, то, значит, уже пробило ключевые транзисторы, и важно хотя бы предотвратить возгорание электропроводки. Если в БП вдруг сгорел предохранитель, то менять его на новый, скорее всего, уже бессмысленно

Отдельно выполняется защита от кратковременных скачков напряжения с помощью варистора (MOV – Metal Oxide Varistor). А вот никаких средств защиты от длительного повышения напряжения в компьютерных БП нет. Эту функцию выполняют внешние стабилизаторы со своим трансформатором внутри.

Фильтр электромагнитных помех (Antec VP700P)

Конденсатор в цепи PFC после выпрямителя может сохранять значительный заряд после отключения от питания. Чтобы беспечного человека, сунувшего палец в разъем питания, не ударило током, между проводами устанавливают разряжающий резистор большого номинала (bleeder resistor). В более изощренном варианте – вместе с управляющей схемой, которая не дает заряду утекать при работе устройства.

Кстати, наличие фильтра в блоке питания ПК (а в БП монитора и практически любой компьютерной техники он тоже есть) означает, что покупать отдельный «сетевой фильтр» вместо обычного удлинителя, в общем-то, без толку. У него внутри все то же самое. Единственное условие в любом случае – нормальная трехконтактная проводка с заземлением. В противном случае конденсаторы CY, соединенные с землей, просто не смогут выполнять свою функцию.

⇡#Линейный и импульсный источники питания

Начнем с основ. Блок питания в компьютере выполняет три функции. Во-первых, переменный ток из бытовой сети электропитания нужно преобразовать в постоянный. Второй задачей БП является понижение напряжения 110-230 В, избыточного для компьютерной электроники, до стандартных значений, требуемых конвертерами питания отдельных компонентов ПК, – 12 В, 5 В и 3,3 В (а также отрицательные напряжения, о которых расскажем чуть позже). Наконец, БП играет роль стабилизатора напряжений.

Есть два основных типа источников питания, которые выполняют перечисленные функции, – линейный и импульсный. В основе простейшего линейного БП лежит трансформатор, на котором напряжение переменного тока понижается до требуемого значения, и затем ток выпрямляется диодным мостом.

Однако от БП требуется еще и стабилизация выходного напряжения, что обусловлено как нестабильностью напряжения в бытовой сети, так и падением напряжения в ответ на увеличение тока в нагрузке.

Чтобы компенсировать падение напряжения, в линейном БП параметры трансформатора рассчитываются так, чтобы обеспечить избыточную мощность. Тогда при высоком токе в нагрузке будет наблюдаться требуемый вольтаж. Однако и повышенное напряжение, которое возникнет без каких-либо средств компенсации при низком токе в полезной нагрузке, тоже неприемлемо. Избыточное напряжение устраняется за счет включения в цепь неполезной нагрузки. В простейшем случае таковой является резистор или транзистор, подключенный через стабилитрон (Zener diode). В более продвинутом – транзистор управляется микросхемой с компаратором. Как бы то ни было, избыточная мощность просто рассеивается в виде тепла, что отрицательно сказывается на КПД устройства.

Пример линейного источника питания со стабилизатором. Избыточная мощность рассеивается на транзисторе Q1

В схеме импульсного БП возникает еще одна переменная, от которой зависит напряжение на выходе, в дополнение к двум уже имеющимся: напряжению на входе и сопротивлению нагрузки. Последовательно с нагрузкой стоит ключ (которым в интересующем нас случае является транзистор), управляемый микроконтроллером в режиме широтно-импульсной модуляции (ШИМ)

Чем выше длительность открытых состояний транзистора по отношению к их периоду (этот параметр называется duty cycle, в русскоязычной терминологии используется обратная величина – скважность), тем выше напряжение на выходе. Из-за наличия ключа импульсный БП также называется Switched-Mode Power Supply (SMPS)

Через закрытый транзистор ток не идет, а сопротивление открытого транзистора в идеале пренебрежимо мало. В действительности открытый транзистор обладает сопротивлением и рассеивает какую-то часть мощности в виде тепла. Кроме того, переход между состояниями транзистора не идеально дискретный. И все же КПД импульсного источника тока может превышать 90%, в то время как КПД линейного БП со стабилизатором в лучшем случае достигает 50%.

Простейшая схема импульсного преобразователя AC/DC с трансформатором

Другое преимущество импульсных источников питания состоит в радикальном уменьшении габаритов и массы трансформатора по сравнению с линейными БП такой же мощности. Известно, что чем выше частота переменного тока в первичной обмотке трансформатора, тем меньше необходимый размер сердечника и число витков обмотки. Поэтому ключевой транзистор в цепи размещают не после, а до трансформатора и, помимо стабилизации напряжения используют для получения переменного тока высокой частоты (для компьютерных БП это от 30 до 100 кГц и выше, а как правило – около 60 кГц). Трансформатор, работающий на частоте электросети 50-60 Гц, для мощности, требуемой стандартным компьютером, был бы в десятки раз массивнее.

Линейные БП сегодня применяются главным образом в случае маломощных устройств, когда относительно сложная электроника, необходимая для импульсного источника питания, составляет более чувствительную статью расходов в сравнении с трансформатором. Это, к примеру, блоки питания на 9 В, которые используются для гитарных педалей эффектов, а когда-то – для игровых приставок и пр. А вот зарядники для смартфонов уже сплошь импульсные – тут расходы оправданны. Благодаря существенно меньшей амплитуде пульсаций напряжения на выходе линейные БП также применяются в тех областях, где это качество востребованно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector