Иерархические базы данных

Историческая справка

1968 — Типичным представителем иерархических систем является Information Management System (IMS) фирмы IBM. Первая версия этого продукта вышла в свет в 1968 году. Чтобы понять иерархическую модель СУБД, попробуйте представить себе дерево (представляет собой структуру данных) со всеми его ветками и
выросшими от него другими деревьями.

1970 — Эти модели впервые предложены Е.Коддом в 1970 году в качестве наиболее независимых от аппаратных средств компьютера. Но только персональные компьютеры, мощные ресурсы которых поступают в полное распоряжение одного пользователя в отличие от больших ЭВМ, открыли дорогу реляционным СУБД. За счет некоторой избыточности сетевая и иерархическая модель могут быть сведены к табличной (реляционной) модели данных.

Обобщенное описание структуры

Термин «древовидная» для описания структуры упоминается в этой статье уже далеко не единожды. Пора рассказать, откуда он произошел. Все потому что иерархическая база данных — это такая БД, которая использует тип данных «дерево». Рассмотрим подробнее, что он из себя представляет.

Это составной тип: в каждый из элементов (узлов) вкладывается несколько последующих (один или более). А начинается все с одного корневого элемента. Суть в том, что каждый из кусочков типа «дерево», является подтипом, тоже «деревом». Много-много разветвленных, и все также упорядоченных структур.

Элементарные типы могут быть простыми и составными, но по существу это всегда записи. Но в простом записи присутствует один тип данных, а в составном — целая их совокупность.

Иерархической модели свойственен принцип потомков, когда каждый предыдущий сегмент является предком для последующего. Кроме того, потомок по отношению к вышестоящему типу является типом подчиненным, в то время как равнозначные один другому записи считаются близнецами.

В чём преимущества

Базы дан­ных и их систе­мы управ­ле­ния зато­че­ны на рабо­ту с боль­шим объ­ё­мом дан­ных и от лица боль­шо­го чис­ла поль­зо­ва­те­лей. Сей­час вы поймёте.

Ско­рость — ещё одно пре­иму­ще­ство базы дан­ных. База дан­ных устро­е­на так, что она лег­ко и быст­ро нахо­дит, запи­сы­ва­ет, пере­пи­сы­ва­ет и сно­ва нахо­дит дан­ные. Всё пото­му, что СУБД все­гда зна­ет, что где лежит и по како­му кри­те­рию искать. Там не будет слу­чай­ных дан­ных в слу­чай­ном месте.

Ско­рость важ­на ещё и пото­му, что СУБД обыч­но обслу­жи­ва­ет сра­зу мно­го пото­ков: одно­вре­мен­но ей могут поль­зо­вать­ся десят­ки и сот­ни тысяч чело­век, поэто­му ей неко­гда копать­ся. В хоро­шо сде­лан­ных БД всё молниеносно.

Слож­ность. Базы дан­ных нуж­ны в чис­ле про­че­го для хра­не­ния слож­но струк­ту­ри­ро­ван­ных дан­ных. Мы при­вык­ли думать, что база дан­ных — это такая таб­ли­ца, где есть стро­ки и столб­цы. Но база дан­ных при пра­виль­ной орга­ни­за­ции может намно­го больше:

  • Свя­зы­вать одну еди­ни­цу дан­ных с мно­же­ством дру­гих. Напри­мер, если один чело­век совер­шил мно­го зака­зов со мно­же­ством това­ров внут­ри каж­до­го, база дан­ных спо­соб­на хра­нить и обра­ба­ты­вать такие связи.
  • База может хра­нить дере­во дан­ных — вро­де того, о кото­ром мы писа­ли недав­но. Попро­буй в реаль­ной жиз­ни похра­нить дерево!
  • В базах могут жить ссыл­ки на дру­гие фраг­мен­ты и отде­лы базы.

Базу мож­но пред­ста­вить как таб­ли­цу, но лишь в самом упро­щён­ном виде. Для более слож­ных задач базу мож­но пред­ста­вить как очень слож­ное дере­во, или огром­ный склад упо­ря­до­чен­ных коро­бок, или даже как огром­ный завод по фасов­ке данных.

Примеры типичных операторов поиска данных

  • найти указанное дерево БД;
  • перейти от одного дерева к другому;
  • найти экземпляр сегмента, удовлетворяющий условию поиска;
  • перейти от одного сегмента к другому внутри дерева;
  • перейти от одного сегмента к другому в порядке обхода иерархии.

Примеры типичных операторов поиска данных с возможностью модификации:

  • найти и удержать для дальнейшей модификации единственный экземпляр сегмента, удовлетворяющий условию поиска;
  • найти и удержать для дальнейшей модификации следующий экземпляр сегмента с теми же условиями поиска;
  • найти и удержать для дальнейшей модификации следующий экземпляр для того же родителя.

Примеры типичных операторов модификации иерархически организованных данных, которые выполняются после выполнения одного из операторов второй группы (поиска данных с возможностью модификации):

  • вставить новый экземпляр сегмента в указанную позицию;
  • обновить текущий экземпляр сегмента;
  • удалить текущий экземпляр сегмента.

В иерархической модели автоматически поддерживается целостность ссылок между предками и потомками. Основное правило: никакой потомок не может существовать без своего родителя.

Достоинства и недостатки реляционной модели данных

Достоинства

  • Изложение информации в простой и понятной для пользователя форме (таблица).
  • Реляционная модель данных основана на строгом математическом аппарате, что позволяет лаконично описывать необходимые операции над данными.
  • Независимость данных от изменения в прикладной программе при изменении.
  • Позволяет создавать языки манипулирования данными не процедурного типа.
  • Для работы с моделью данных нет необходимости полностью знать организацию БД.

Недостатки

  • Относительно медленный доступ к данным.
  • Трудность в создании БД основанной на реляционной модели.
  • Трудность в переводе в таблицу сложных отношений.
  • Требуется относительно большой объем памяти.

Индексы

Индексы – основной способ ускорения работы баз данных. Чтобы найти нужную запись, необходимо сканировать всю таблицу, на что уходит большое количество времени.
Идея индексов состоит в том, чтобы создать для столбца копию, которая постоянно будет поддерживаться в отсортированном состоянии. Это позволяет очень быстро осуществлять поиск по такому столбцу, так, как заранее известно, где необходимо искать значение.
Добавление или удаление записи требует дополнительного времени на сортировку столбца, кроме того, создание копии увеличивает объем памяти, необходимый для размещения таблицы на жестком диске.

Существует несколько видов индексов:

  • Первичный ключ – главный индекс таблицы. В таблице может быть только один первичный ключ, и все значения такого индекса должны отличаться друг от друга, являться уникальными в пределах одного столбца.
  • Обычный индекс – таких индексов может быть несколько.
  • Уникальный индекс – уникальных индексов также может быть несколько, на значения индекса не должны повторяться.
  • Полнотекстовый индекс – специальный вид индекса для столбцов типа TEXT, позволяющий производить полнотекстовый поиск.

Курсы, тренинги, вебинары, дистанционное обучение.

Формирование устойчивых навыков эффективной обработки информации: увеличение скорости чтения в 5-8 раз, повышение качества воспроизведения информации, активизация мышления, сокращение времени на работу с текстами, уменьшение утомляемости при работе с документами. Опыт проведения групповых, индивидуальных и корпоративных тренингов в компаниях: «Canon», «Росбилдинг», «Лукойл», РАО ЕЭС, «Московская правда», издательство «Эксмо» и тд. Подробнее

Активизация и расширение возможностей памяти, развитие памяти, внимания.

Формирование навыка запоминания текстов любого объема и степени сложности, точной информации, встречающейся в текстах. Методика основана на развитии образной, ассоциативной и логической памяти. Корпоративные и индивидуальные программы в компаниях: СТС, Центр ФБК, «Джонсон и Джонсон», Московская Международная Киношкола и многие др. Подробнее

Эффективная обработка информации

Развитие навыков работы с любой информацией. Включает тренинги: «Скорочтение», «СуперпамятьТМ». Корпоративные и индивидуальные тренинги в компаниях: НП «АТС», Нефтегазстрой, Сетьстройинвест, ТрансТелеКом и др.  Подробнее

Тренинг направлен на быстрое увеличение словарного запаса в иностранном языке и предназначен для всех, кто изучает иностранные языки и кому дорого их время. Методика позволяет запоминать по 50-60 иностранных слов в час, надежно сохранять их в памяти и извлекать в нужный момент времени. Методика основана на использовании ассоциативных свойств памяти и визуальном мышлении. Это особый способ организации тренировки памяти, существенно расширяющий ее возможности. Подробнее

Тренинг включает изучение способов запоминания любой информации: числа, даты, тексты, отчеты, аналитические данные. Продолжительность тренинга 9 занятий

Запоминание большого числа точных сведений, логически несвязанной информации (дат, имен, телефонов, наименований, энциклопедических сведений) с однократного восприятия. Надежное сохранение в памяти на неограниченный срок. Жизнь без записных книжек и органайзеров. Подробнее

Тренинг предназначен для всех, кто хочет овладеть основами речи, кто готовится защищать диплом, диссертацию, кто выступает на совещаниях, проводит презентации. Для всех, кто считает верным принцип Наполеона: «Кто не умеет говорить, карьеры не сделает». Наш курс для вас! Гармоничное сочетание теории и практики! Подробнее

Ваш голос настораживает ваших партнеров?

Тот, кто владеет мастерством речи, способен легко установить контакт с любой аудиторией, доверительно разговорит собеседника, создаст эмоционалный контакт с партнерами, убедит в своей правоте.

Красивый голос делает человек приятнее и может компенсировать недостатки во внешности. Подробнее

На тренинге «Деловая переписка» Вы будете:

  • правильно составлять деловые письма на любые темы даже в экстремальных условиях (выразить мысль на бумаге в условиях офисного гама не такая простая задача);
  • узнаете, что деловое письмо деловому письму рознь, поэтому необходимо различать задачи каждого конкретного письма и знать правила их написания;
  • повысите уровень грамотности;
  • благодаря уникальному анализу документов научитесь с легкостью находить и исправлять ошибки в своих письмах и письмах своих коллег. Подробнее

Программа обучения русскому языку направлена на повышение практической грамотности, поскольку умение именно на практике применять теоретические знания в области русского языка позволяет, быть успешными в любой области. Подробнее

Научить людей лучше понимать особенности своего мышления, контролировать свой образ мыслей и более точно соотносить его с поставленными задачами с целью более эффективного использования процесса мышления при решении проблем.

Шесть шляп мышления — простой и практический способ, позволяющий преодолеть три фундаментальные трудности, связанные с практическим мышлением: эмоции, беспомощность, путаницу. Метод позволяет разделить мышление на шесть типов, или режимов, каждому из которых отвечает метафорическая цветная «шляпа». Такое деление позволяет использовать каждый режим намного эффективнее, и весь процесс мышления становится более сфокусированным и устойчивым.

Подростковый возраст — это очень непростое время для самих ребят и их родителей. Поиски себя, общение со сверстниками, родственниками и учителями, первая любовь и первая вражда… Тренинг «Мастерство общения для подростков» помогает решить проблемы, связанные с пониманием себя и окружающих. Подробнее

Вы заботитесь о будущем  своих детей? Хотите, чтобы они радовали Вас своими успехами и с детства приучались к естественности поведения в обществе, к лёгкости в общении; владели своим телом и обладали красивым голосом, умели выражать свои эмоции? Подробнее

Основные понятия иерархической модели

Иерархическая модель является самой ранней моделью баз данных. Для понимания иерархической модели необходимо запомнить следующие термины:

  • Атрибут (или поле)– минимальный элемент данных. Атрибут имеет уникальное имя, по которому к нему можно обратиться из программного кода.
  • Запись – логически связанная совокупность атрибутов. Запись имеет уникальное имя, которое позволяет обращаться к ней из программного кода. Записи можно добавлять, изменять, удалять.
  • Экземпляр записи – конкретная запись с конкретными значениями атрибутов.
  • Групповое отношение — иерархическое отношение между записями двух разных типов. Запись, которая, находится выше по иерархии, называется родительской. Записи, которые, расположены ниже по иерархии называются дочерними.

Модель графически можно представить в виде перевернутого дерева, которое состоит из записей различных уровней. Вверху дерева находится одна запись, которая называется корневой записью. Корневая запись содержит ключ — атрибут с уникальным значением. Некорневые записи тоже имеют ключи, но эти ключи должны быть уникальными только в рамках группового отношения. Каждая запись однозначно идентифицируется полным ключом. Полным ключом записи называется совокупность ключей всех записей, начиная с корневой и заканчивая данной записью.

Пример 1

Имеется спортивный клуб, где у каждого спортсмена есть свой тренер. У тренера может быть несколько спортсменов. Спортсмены участвуют в соревнованиях. Каждый спортсмен может участвовать во многих соревнованиях. Для автоматизации учета в спортивном клубе потребуются следующие записи:

  • Спортсмен (код спортсмена, разряд, ФИО);
  • Тренер (код тренера, разряд, ФИО);
  • Соревнование (код соревнования, дата, название).

Отношения между записями соответствуют связям между объектами реального мира. Например, отношение между объектом «тренер» и объектом «спортсмен» моделируется связью типа «один-ко-многим». Поэтому в записи «спортсмен» являются дочерними по отношению к записи «тренер». А вот между объектами «спортсмен» и «соревнование» в реальной жизни присутствует связь «много-ко-многим», потому что спортсмен может участвовать во многих соревнованиях, а в одном соревновании участвует много спортсменов. Отношения типа «много-ко-многим» в иерархической модели данных не существует. Единственный способ смоделировать его — это дублирование информации путем создания дополнительного дерева 2.

Как отследить iPhone друга через Find My Friends?

Приложение Find My Friends предоставляет пользователю возможность узнать, где находятся его друзья и близкие. Если на телефоне установлена операционная система iOS 9 или более поздняя версия, то программа должна быть установлена по умолчанию. На iOS 8 понадобится ручная установка приложения. Если войти в сервис iCloud на своем устройстве, то автоматически будет выполнен вход в приложение Find My Friends с таким же Apple ID.

Смартфон друга будет обнаружен, только если у него тоже установлена такая программа. Для добавления друга необходимо:

  • запустить приложение Find Friends;
  • нажать кнопку «Добавить»;
  • выбрать необходимое имя из списка или ввести адрес электронной почты;
  • нажать «Готово», после чего запрос будет отправлен.

Если друг согласен делиться своим местоположением на карте, он одобрит запрос. В дальнейшем его можно будет отслеживать онлайн через Find My Friends или веб-страницу iCloud.

При желании можно указать электронный адрес, который понадобится для отправки запросов. Если пользователь не хочет, чтобы его отслеживали, он может отключить запросы на дружбу в разделе «Приглашения».

Иерархическая база данных, структура иерархических данных

Когда речь идёт о хранении иерархических данных, каждый объект хранит информацию в виде определенной сущности, и у каждой сущности могут быть родительские и дочерние элементы, а у дочерних, в свою очередь, тоже могут быть дочерние элементы. Таким образом, можно сказать, что это данные, которые подлежат строгой иерархии (представьте себе своеобразное дерево).

Простой пример иерархических данных — документ в формате XML либо файловая система компьютера.

Нельзя не упомянуть и то, что базы данных этого вида оптимизированы под чтение информации. При такой структуре данные можно быстро выбирать из нужной области, отдавая запрашиваемую информацию пользователям. Например, компьютер легко работает с конкретной папкой либо файлом, которые, по сути, можно назвать объектами структуры иерархических данных. Но когда нужно перебрать всю информацию, это может занять время (если вернуться к вышеописанному примеру, то проверка антивирусом всех уголков нашего компьютера выполняется не так быстро, как хотелось бы).

На рисунке представлена классическая структура иерархической базы данных. Вверху находится родитель (его ещё называют корневым элементом), ниже размещены дочерние элементы. Элементы с данными, находящиеся на одном уровне, можно назвать братьями либо соседними элементами. БД данной категории бывают с разным количеством уровней и разной степени вложенности.

Как скачать и установить сборку

Применение иерархической структуры данных

Иерархическая база данных — это хранилище, применимое для тех систем, которым изначально свойственна древовидная структура. Для них выбирать подобное моделирование — логично.

Пример иерархической базы данных с изначально систематизированными степенями — воинское подразделение, в котором, как известно, четко определены ранги. Также это могут быть сложные механизмы, состоящие из все более упрощающихся к низу иерархии частичек. Для моделирования таких систем и приведения их к виду рассматриваемой БД нет необходимости в декомпозиции. Тем не менее такая ситуация складывается не всегда.

Кроме того, существует тенденция, при которой направленный вниз по структуре запрос проще, чем аналогичный вверх.

Сетевые базы данных

Существуют:

  • реляционные;
  • иерархические;
  • сетевые базы данных.

Почему мы вновь вспомнили о классификации? Поскольку, в отличие от реляционной, сетевая БД имеет с иерархической схожие черты.

Время вспомнить виды связей в базах данных. Есть связи «один-к-одному», «один-ко-многим» и «многие-ко-многим». Нас интересует последняя. В сетевой БД она проявляется следующим образом: у одного узла-наследника может быть сразу несколько предков. Свойство иметь несколько потомков также сохраняется. Можно сказать, что иерархические базы данных, сетевые базы данных сами по себе уже пример такого наследования. Предком в данном случае является именно иерархическая БД, так как принцип построения структуры в сетевых БД остается прежним.

Управляющая часть иерархической модели

В рамках иерархической модели выделяют языковые средства описания данных (ЯОД) и средства манипулирования данными (ЯМД). Каждая физическая база описывается набором операторов, обусловливающих как её логическую структуру, так и структуру хранения БД. При этом способ доступа устанавливает способ организации взаимосвязи физических записей.

Определены следующие способы доступа:

  • иерархически последовательный;
  • иерархически индексно-последовательный;
  • иерархически прямой;
  • иерархически индексно-прямой;
  • индексный.

Помимо задания имени БД и способа доступа описания должны содержать определения типов сегментов, составляющих БД, в соответствии с иерархией, начиная с корневого сегмента. Каждая физическая БД содержит только один корневой сегмент, но в системе может быть несколько физических БД.

Среди операторов манипулирования данными можно выделить операторы поиска данных, операторы поиска данных с возможностью модификации, операторы модификации данных. Набор операций манипулирования данными в иерархической БД невелик, но вполне достаточен.

8.1. Иерархическая модель базы данных

Иерархические
модели
 баз
данных исторически возникли одними из
первых. Информация в
иерархической базе организована по
принципу древовидной структуры, в виде
отношений «предок-потомок«.
Каждая запись может
иметь не более одной родительской записи
и несколько подчиненных. Связи записей
реализуются в виде физических указателей
с одной записи на другую. Основной
недостаток иерархической
структуры базы данных
 —
невозможность реализовать отношения
«многие-ко-многим«,
а также ситуации, когда запись имеет
несколько предков.

Иерархические
базы данных
Иерархические
базы данных
 графически
могут быть представлены как
перевернутое дерево,
состоящее из объектов различных уровней.
Верхний уровень (корень
дерева
)
занимает один объект,
второй — объекты второго уровня и так
далее.

Между
объектами существуют связи,
каждый объект может
включать в себя несколько объектов
более низкого уровня. Такие объекты
находятся в отношении предка (объект,
более близкий к корню) к потомку
(объект более
низкого уровня), при этомобъект-предок
может не иметь потомков или иметь их
несколько, тогда как объектпотомок обязательно
имеет только одного предка. Объекты,
имеющие общего предка, называются
близнецами.

Рис.
6. 
Иерархическая
база данных

Организация
данных в СУБД иерархического
типа определяется в терминах: элемент,
агрегат, запись (группа),
групповоеотношениебаза
данных
.

Атрибут(элемент
данных)


наименьшая единица структуры данных.
Обычно каждому элементу при описании
базы данных присваивается уникальное
имя. По этому имени к нему обращаются
при обработке. Элемент данных также
часто называют полем.

Запись


именованная совокупность атрибутов.
Использование записей позволяет за
одно обращение к базе получить некоторую
логически связанную совокупность
данных. Именно записи изменяются,
добавляются и удаляются. Тип записи
определяется составом ее
атрибутов. Экземпляр
записи
 —
конкретная запись с конкретным
значением элементов.

Групповое
отношение

— иерархическое
отношение
 между
записями двух типов. Родительская
запись (владелец группового отношения)
называется исходной записью, а дочерние
записи (члены группового отношения)
— подчиненными. Иерархическая база
данных может хранить только такие
древовидные структуры.

Пример.
Рассмотрим
следующую модель данных предприятия
(см. рис.
7): предприятие состоит из отделов,
в которых работают сотрудники. В каждом
отделе может работать несколько
сотрудников, но сотрудник не может
работать более чем в одном отделе.

Поэтому,
для информационной
системы управления
 персоналом
необходимо создать групповое отношение,
состоящее из родительской записи
ОТДЕЛ (НАИМЕНОВАНИЕ_ОТДЕЛА,
ЧИСЛО_РАБОТНИКОВ) и дочерней записи
СОТРУДНИК (ФАМИЛИЯ, ДОЛЖНОСТЬ, ОКЛАД).
Это отношение показано на рис.
7 (а) (Для простоты полагается, что
имеются только две дочерние записи).

Для
автоматизации учета контрактов с
заказчиками необходимо создание еще
одной иерархической структуры: заказчик
— контракты с ним — сотрудники,
задействованные в работе над контрактом.
Это дерево будет включать записи
ЗАКАЗЧИК (НАИМЕНОВАНИЕ_ЗАКАЗЧИКА,
АДРЕС), КОНТРАКТ(НОМЕР, ДАТА,СУММА),
ИСПОЛНИТЕЛЬ (ФАМИЛИЯ, ДОЛЖНОСТЬ,
НАИМЕНОВАНИЕ_ОТДЕЛА) ( рис.
7b).

Рис.
7. 
Пример
иерархической БД

Из
этого примера видны недостатки
иерархических БД:

Частично
дублируется информация между
записями СОТРУДНИК и ИСПОЛНИТЕЛЬ (такие
записи называют парными), причем
виерархической
модели данных
 не
предусмотрена поддержка соответствия
между парными записями.

Иерархическая
модель
 реализует отношение между
исходной и дочерней записью по схеме
1:N, то есть одной родительской записи
может соответствовать любое число
дочерних.

Допустим
теперь, что исполнитель может
принимать участие более чем в одном
контракте (т.е. возникает связь типа
M:N). В этом случае в базу данных необходимо
ввести еще одно групповое отношение,
в котором ИСПОЛНИТЕЛЬ будет
являться исходной записью, а КОНТРАКТ
— дочерней ( рис.
7 c). Таким образом, мы опять вынуждены
дублировать информацию.

Иерархическая
структура предполагаета неравноправие
между данными — одни жестко подчинены
другим. Подобные структуры, безусловно,
четко удовлетворяют требованиям многих,
но далеко не всех реальных задач.

Логическое проектирование и оптимизация

OLTP – обработка транзакций в режиме реального времени. Способ организации БД, при котором система работает с небольшими по размерам транзакциями, но идущими большим потоком, и при этом клиенту требуется от системы минимальное время отклика. Примерами OLTP приложений могут быть системы складского учета, системы заказов билетов, банковские системы, выполняющие операции по переводу денег.
Особенности OLTP приложений:

  • Транзакций очень много.
  • Транзакции выполняются одновременно.
  • При возникновении ошибки транзакция должна целиком откатиться и вернуть систему к состоянию, которое было до начала транзакции (не должно быть ситуации, когда деньги сняты со счета, но не поступили на другой счет).
  • Все запросы к базе данных, которые должны выполняться в реальном времени, состоят из команд вставки, обновления, удаления.

OLAP системы характеризуются следующими признаками:

  • Добавление в систему новых данных происходит относительно редко крупными блоками.
  • Данные, добавленные в систему, обычно никогда не удаляются.
  • Перед загрузкой данные проходят различные процедуры очистки, связанные с тем, что в одну систему могут поступать данные из многих источников, имеющих различные форматы представления для одних и тех же понятий, данные могут быть некорректны, ошибочны
  • Запросы к системе являются нерегламентированными и, как правило, достаточно сложными. Очень часто новый запрос формулируется аналитиком для уточнения результата, полученного при выполнении предыдущего запроса.
  • Скорость выполнения запросов важна, но не критична.

Примеры

Иерархическая база данных — это многообразие различных уровней, на которых строятся взаимосвязи. Схематично она выглядит как перевернутый граф. Пример иерархической базы данных — любое государственное административное учреждение. Взять, допустим, школу.

На самом верхней уровне будет располагаться «лидер» администрации — директор. В его подчинении завучи, у завучей — преподаватели, который руководят параллелями классов. В каждой параллели энное их количество, а в каждом классе есть некоторое число учеников.

По такому же принципу можно расписать и управление какой-нибудь корпорацией. Глава компании или даже совет директоров на самом верху. Далее — все большее количество подразделений, в каждом из которых действует своя структура. Есть и общие черты: начальник в каждом отделе, его помощник, его секретарь, собственно, офисные сотрудники и так далее.

InnoDB

Данный тип таблиц обеспечивает высокую производительность и устойчивое хранение данных в таблицах объемом вплоть до 1 Тбайт и нагрузкой на 
сервер до 800 вставок/обновлений в секунду.Особенности таблиц типа InnoDB:

  • Таблицы не создаются в базах данных, и для каждой из таблиц не выделяется отдельный файл данных. Исключение – файл определения с расширением frm, который создается по умолчанию. Все таблицы хранятся в едином табличном пространстве, поэтому имена таблиц должны быть уникальными.
  • Хранение данных в едином табличном пространстве позволяет снять ограничение на объем таблиц, так как файл с таблицами может быть разбит не несколько частей и распределен по нескольким дискам или даже хостам.
  • Данный тип таблиц поддерживает автоматическое восстановление после сбоев.
  • Обеспечивается поддержка транзакций.
  • Единственный тип таблиц, поддерживающий внешние ключи и каскадное удаление.
  • Выполняется блокировка на уровне отдельных записей.
  • Расширенная поддержка кодировок.
  • Рушатся при достижении объема в несколько гигабайт, однако заметно уступают в скорости и не поддерживают полнотекстовый поиск.

Плоская модель

Модель плоского файла

Модель плоской (или таблица) состоит из одного двумерного массива данных элементов, где предполагаются все члены данного столбца , чтобы быть аналогичные ценности, и все члены ряда предполагаются связанными друг с другом. Например, столбцы для имени и пароля, которые могут использоваться как часть базы данных безопасности системы. Каждая строка будет иметь конкретный пароль, связанный с отдельным пользователем. Столбцы таблицы часто имеют связанный с ними тип, определяющий их как символьные данные, информацию о дате или времени, целые числа или числа с плавающей запятой. Этот табличный формат является предшественником реляционной модели.

Отзывы и комментарии о сайте: cashbox.ru

Основные свойства типа hierarchyidKey Properties of hierarchyid

Значение типа данных hierarchyid представляет позицию в древовидной иерархии.A value of the hierarchyid data type represents a position in a tree hierarchy. Значения hierarchyid обладают следующими свойствами.Values for hierarchyid have the following properties:

  • Исключительная компактностьExtremely compact

    Среднее число бит, необходимое для представления узла в древовидной структуре с n узлами, зависит от среднего количества потомков у узла.The average number of bits that are required to represent a node in a tree with n nodes depends on the average fanout (the average number of children of a node). Для структур с низкой степенью ветвления (0-7) объем занимаемой памяти равен примерно 6*logA n бит, где A — среднее ветвление.For small fanouts, (0-7) the size is about 6*logA n bits, where A is the average fanout. Для представления узла в иерархии организации, насчитывающей 100 000 человек со средним уровнем ветвления 6, необходимо около 38 бит.A node in an organizational hierarchy of 100,000 people with an average fanout of 6 levels takes about 38 bits. Эта величина округляется до 40 бит (5 байт), которые необходимы для хранения.This is rounded up to 40 bits, or 5 bytes, for storage.

  • Сравнение проводится в порядке приоритета глубиныComparison is in depth-first order

    Если заданы два значения hierarchyid — a и b, a<b означает, что значение a появляется раньше значения b, если проходить по дереву с приоритетным направлением в глубину.Given two hierarchyid values a and b, a<b means a comes before b in a depth-first traversal of the tree. Индексы для типов данных hierarchyid располагаются в порядке приоритета глубины, а узлы, встречающиеся рядом при проходе по дереву с приоритетным направлением глубины, хранятся рядом друг с другом.Indexes on hierarchyid data types are in depth-first order, and nodes close to each other in a depth-first traversal are stored near each other. Например, потомки некоторой записи хранятся рядом с этой записью.For example, the children of a record are stored adjacent to that record.

  • Поддержка произвольных вставок и удаленийSupport for arbitrary insertions and deletions

    С помощью метода GetDescendant можно в любой момент создать одноуровневый элемент, расположенный справа от заданного узла, слева от заданного узла или между любыми двумя другими одноуровневыми элементами.By using the GetDescendant method, it is always possible to generate a sibling to the right of any given node, to the left of any given node, or between any two siblings. Свойство сравнения сохраняется, если произвольное число узлов вставляется в иерархию или удаляется из нее.The comparison property is maintained when an arbitrary number of nodes is inserted or deleted from the hierarchy. Большинство операций вставки и удаления сохраняют свойство компактности.Most insertions and deletions preserve the compactness property. Однако операции вставки между двумя узлами приводят к созданию значений hierarchyid, обладающих менее компактным представлением.However, insertions between two nodes will produce hierarchyid values with a slightly less compact representation.

Тип поля

Тип поля определяется по типу данных, содержащихся в нем. В полях могут содержаться данные следующих типов:

  • Счетчик, в нем содержится последовательность целых чисел, задаваемых автоматически при вводе записей. Пользователь данные числа не может изменить;
  • Текстовый, в нем содержатся символы различных типов;
  • Числовой, в нем содержатся числа различных типов;
  • Дата/Время используется для содержания даты или времени;
  • Картинка, используется для хранения изображения;
  • Логический, имеет значения Истина (Да) или Ложь (Нет).

Для каждого типа характерен свой набор свойств. Наиболее важными из которых являются:

  • размер поля используется для определения максимальной длины текстового или числового поля;
  • формат поля используется для установления формата данных;
  • обязательное поле используется для указания на то, что это поле обязательно нужно заполнить.

Реляционные базы данных

Реляционная модель базы данных состоит из трех частей:Структурная часть – описывает, какие объекты рассматриваются реляционной моделью. Реляционная база данных состоит из набора отношений. Схемой реляционной базы данных называется набор заголовков отношений, входящих в базу данных.Целостная часть – описывает ограничения специального вида, которые должны выполняться для любых отношений в любых реляционных базах данных. Это целостность сущностей и целостность внешних ключей.Манипуляционная часть – описывает два эквивалентных способа манипулирования реляционными данными – реляционную алгебру и реляционное исчисление.

Термины реляционных баз данных.

Реляционный термин Описание
Отношение  Таблица
Заголовок отношения  Заголовок таблицы
Тело отношения Тело таблицы
Атрибут отношения Наименование столбца (поля) 
таблицы
Кортеж отношения Строка (запись) таблицы
Степень отношения Количество столбцов таблицы
Мощность (кардинальность) 
отношения
Количество строк таблицы
Домен Базовый или пользовательский тип 
данных

Структурная часть иерархической модели

Основными информационными единицами в иерархической модели данных являются сегмент и поле. Поле данных определяется как наименьшая неделимая единица данных, доступная пользователю. Для сегмента определяются тип сегмента и экземпляр сегмента. Экземпляр сегмента образуется из конкретных значений полей данных. Тип сегмента — это поименованная совокупность входящих в него типов полей данных.

Как и сетевая, иерархическая модель данных базируется на графовой форме построения данных, и на концептуальном уровне она является просто частным случаем сетевой модели данных. В иерархической модели данных вершине графа соответствует тип сегмента или просто сегмент, а дугам — типы связей предок — потомок. В иерархических структуpax сегмент — потомок должен иметь в точности одного предка.

Иерархическая модель представляет собой связный неориентированный граф древовидной структуры, объединяющий сегменты. Иерархическая БД состоит из упорядоченного набора деревьев.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector