Как решать задачи на проценты в 6 классе

Содержание:

Деление числа на 100

При делении на 100 получается 1% от этого числа. Это правило можно использовать по-разному. Например, чтобы узнать процент от суммы, нужно умножить их на размер 1%. А чтобы перевести известное значение, следует разделить его на размер 1%. Этот метод отлично помогает в вопросе, как перевести целое число в проценты.

Представьте, что вы пришли в магазин за шоколадом. Обычно он стоит 250 рублей, но сегодня скидка 15%. Если у вас есть дисконтная карта магазина, шоколад обойдется вам в 225 рублей. Чем будет выгоднее воспользоваться: скидкой или картой?

Как решаем:

  1. Переведем 15% в рубли:
    250 : 100 = 2,5 — это 1% от стоимости шоколада,
    значит 2,5 * 15 = 37,5 — это 15%.
  2. 250 — 37,5 = 212,5.
  3. 212,5 < 225.

Ответ: выгоднее воспользоваться скидкой 15%.

Как посчитать проценты: примеры

Альтернативный метод вычислений

Представим один процент не десятичной, а простой дробью — 1/100. Аналогично можно записать любое количество процентов. Так, 10 % — это 0,1 или 1/10, 25 % — 0,25 или 25/100=1/4 и так далее. Следовательно, найти 10 % от числа довольно просто — нужно разделить исходное число на 10. Таким способом удобно вычислять 20, 25 и 50 процентов:

  • 20 % — это 1/5, значит, нужно делить на 5 исходное число.
  • 25 % — 1/4, нужно делить на 4.
  • 50 % — это 1/2, просто делить на два.

Но не всякий процент удобно рассчитать таким методом. К примеру, 33 % — это 33/100, что при записи десятичной дробью дает 0,3333 с бесконечным количеством троек после запятой.

Если возникают сомнения в правильности проводимых расчетов, всегда можно проверить себя на калькуляторе, который сейчас есть в любом мобильном устройстве и на любом компьютере.

В прошлом видеоуроке мы рассматривали решение задач на проценты с помощью пропорций. Тогда по условию задачи нам требовалось найти значение той или иной величины.

В этот раз исходное и конечное значения нам уже даны. Поэтому в задачах будет требоваться найти проценты. Точнее, на сколько процентов изменилась та или иная величина. Давайте попробуем.

Итак, решаем через пропорцию. Первый шаг — исходная цена была равна 3200 рублей. Следовательно, 3200 рублей — это 100%.

Кроме того, нам дана конечная цена — 4000 рублей. Это неизвестное количество процентов, поэтому обозначим его за x
. Получим следующую конструкцию:

3200 — 100%
4000 — x
%

Что ж, условие задачи записано. Составляем пропорцию:

Дробь слева прекрасно сокращается на 100: 3200: 100 = 32; 4000: 100 = 40. Кроме того, можно сократить на 4: 32: 4 = 8; 40: 4 = 10. Получим следующую пропорцию:

Воспользуемся основным свойством пропорции: произведение крайних членов равно произведению средних. Получаем:

8 · x
= 100 · 10;
8x
= 1000.

Это обычное линейное уравнение. Отсюда находим x
:

x
= 1000: 8 = 125

Итак, мы получили итоговый процент x
= 125. Но является ли число 125 решением задачи? Нет, ни в коем случае! Потому что в задачи требуется узнать, на сколько процентов была повышена цена на кроссовки.

На сколько процентов — это значит, что нам нужно найти изменение:

∆ = 125 − 100 = 25

Получили 25% — именно настолько была повышена исходная цена. Это и является ответом: 25.

Расчет простых процентов за период в несколько месяцев

Формула простых процентов в этом случае будет иметь видP=P*(1+n/100*m/12)здесь обозначено m – количество месяцев (month).

Задача 3. Вкладчик разместил сумму размером 1600 рублей в банк на один год, однако ему пришлось забрать деньги через семь месяцев. Процентная ставка при досрочном снятии депозита составляет 9 % в год. Найти сумму, которую получит вкладчик.

Решение: Применяем формулу для вычислений

P=1600*(1+9/100*7/12)=1684 (рублей.) За 7 месяцев вкладчик получит 1684 рублей. Из приведенной формулы достаточно просто получить все необходимые величины для обратной задачи. Количество месяцев определяют по формулеm= (P/P-1)/n*100*12

а процентную ставку находят из зависимостиn= (P/P-1)/m*100*12

Таблица основных показателей процентных величин

Если вы готовитесь к числовым тестам на проценты или доли, мы настоятельно рекомендуем потратить несколько часов и выучить данную таблицу. Это поможет сэкономить вам драгоценное время по время прохождения реального тестирования.

Доля Десятичный Процент
1/2 0,5 50%
1/3 0,333 33,333%
2/3 0,666 66,666%
1/4 0,25 25%
3/4 0,75 75%
1/5 0.2 20%
2/5 0,4 40%
3/5 0.6 60%
4/5 0.8 80%
1/6 0,1666 16,666%
5/6 0,8333 83,333%
1/8 0,125 12,5%
3/8 0,375 37,5%
5/8 0,625 62,5%
7/8 0,875 87,5%
1/9 0,111 11,111%
2/9 0,222 22,222%
4/9 0,444 44,444%
5/9 0,555 55,555%
7/9 0,777 77,777%
8/9 0,888 88,888%
1/10 0,1 10%
1/12 0,08333 8,333%
1/16 0,0625 6,25%
1/32 0,03125 3,125%

Как даже с 1 000 рублей в кармане создать пассивный доход к пенсии

Пенсионный возраст увеличили, накопительную пенсию заморозили, регулярно проводят пенсионную реформу и меняют условия. Все эти хаотичные телодвижения говорят только о том, что у руководства нет четкого плана действий и видения, как же должна начисляться пенсия в нашей стране.

Какой вывод простому гражданину нужно сделать из всего этого? Только один – накопить на пенсию самостоятельно. И поможет в этом сложный процент. На конкретных расчетах посмотрим, как даже с 1 000 ₽ в месяц создать пассивный доход. Но для начала замечательная сказка из книги Бодо Шефера “Мани, или Азбука денег”.

Жил-был когда-то крестьянин. Каждое утро он ходил в курятник, чтобы взять на завтрак яйцо, которое снесла его курица. Но однажды он нашел в гнезде не обычное яйцо, а золотое. Сначала он не мог в это поверить. Возможно, кто-то решил над ним зло подшутить. Но ювелир, которому он принес показать яйцо, подтвердил, что оно из чистого золота. Крестьянин выгодно продал яйцо и устроил большой праздник.

На следующее утро он пошел в курятник раньше, чем обычно. В гнезде опять лежало золотое яйцо. Так продолжалось несколько дней. Но крестьянин был жадным и хотел побыстрее разбогатеть. Он злился на свою курицу, потому что “глупая птица” не могла объяснить ему, как она умудряется нести золотые яйца. Ему казалось, что тогда он мог бы и сам нести золотые яйца. Тогда у него было бы каждый день по два яйца. И однажды крестьянин так сильно разозлился, что вбежал в курятник и зарезал свою курицу. Некому стало нести золотые яйца.

Мораль этой сказки такова: нельзя резать курицу, несущую золотые яйца. Но чтобы получать золотые яйца, надо сначала завести курочку. Этим вы и должны заняться как можно скорее. Время – друг инвестора и враг того, кто откладывает на потом создание личного капитала.

Пример 1. Необходимо рассчитать, сколько денег нужно накопить, чтобы жить на пассивный доход через какое-то количество лет. Допустим, мы хотим на пенсии ежемесячно получать 50 000 ₽. Учтем инфляцию 4 %.

Ставку доходности примем равной 10 %. Ее размер зависит от состава инвестпортфеля. Если решили копить в облигациях, то закладывать надо меньший %. Если составить сбалансированный портфель из разных инструментов (например, ETF, акции и облигации отдельных эмитентов, золото), то 10 % – очень консервативная оценка. На практике получается значительно больше.

Расчет без учета инфляции: 50 000 * 12 месяцев / 0,1 = 6 000 000 ₽. Для учета инфляции воспользуемся онлайн-калькулятором. Необходимо накопить уже 10 000 000 ₽.

Пример 2. Есть начальный капитал 50 000 ₽ с ежемесячным вложением равной суммы: 1 000 ₽, 5 000 ₽ и 10 000 ₽. Доходность – 10 %, примем ежегодное начисление %. Сколько накопим через 10, 20, 30 и 40 лет?

Сумма ежемесячных взносов Срок накопления
10 лет 20 лет 30 лет 40 лет
1 000 ₽ 320936,22 1023674,99 2846398,39 7574073,45
5 000 ₽ 1085932,6 3772874,97 10742111,47 28818516,12
10 000 ₽ 2042178,08 7209374,94 20611752,84 55374069,46

Какие выводы мы можем сделать из этих расчетов:

  1. Накопить на пассивный доход в 50 000 ₽ в месяц мы сможем, откладывая 5 000 ₽ в течение 30 лет. Если инвестируем по 10 000 ₽, то уже примерно через 23 года можно выходить на пенсию.
  2. С ежемесячными 1 000 ₽ нужно довольствоваться меньшей суммой пассивного дохода. Например, чтобы получать ежемесячно 35 000 ₽, надо накопить 7 000 000 ₽. Из таблицы видно, что только через 40 лет достигнем этого. А вот для ежемесячной прибавки к пенсии в 20 000 ₽ понадобится накопить 4 000 000 ₽ за 35 лет.

Поиграйте своими цифрами в любом финансовом калькуляторе сложных процентов. У кого-то начальная или ежемесячная сумма будет больше, кто-то рассмотрит меньший или больший срок и т. д.

Увеличение и уменьшение масштаба документа Word с помощью панели масштабирования

Необходимость увеличения и уменьшения масштаба документа Word встречается довольно часто. Microsoft ставит панель масштабирования справа от строки состояния в нижней части окна для быстрого доступа.

Чтобы использовать панель масштабирования, щелкните и перетащите ползунок влево или вправо, чтобы уменьшить или увеличить соответственно. При этом Вы заметите, что процентное соотношение страниц уменьшается или увеличивается.

Также можно щелкнуть знак минус (-) или плюс (+), чтобы уменьшить или увеличить масштаб с шагом 10 процентов.

Если Вы увеличите изображение до такой степени, что части документа Word больше не будут видны горизонтально, то в нижней части страницы появится горизонтальная полоса прокрутки.

Депозитный калькулятор онлайн. Расчет процентов по депозиту.

Cумма вклада

Процентная ставка (%)

Срок вклада (мес.)

Ежемесячные проценты
реинвестируютсяснимаются

Размер доходов по депозитам это один из наиболее интересных для вкладчиков вопросов.

Даже не обладая базовыми познаниями в экономике, человек со средним образованием способен подсчитать сумму, которую ему обещает выплатить коммерческий банк за пользование его деньгами.

Депозитный калькулятор онлайн

Депозит, как и достаточное количество профессиональных терминов в банковском деле, имеют итальянское происхождение, смысл которого заключается во временном хранении и использовании каких-либо материально-финансовых ценностей с целью извлечения дохода.

В современном мире такая финансовая операция, как хранение средств на депозитном счете в коммерческом банке, является наиболее консервативным инструментом финансового менеджмента, но одновременно и наиболее безопасным.

  1. Составление депозитного договора
  2. Открытие депозитного счета
  3. Инкассирование банком средств вкладчика

Депозитный калькулятор онлайн. Расчет процентов по депозиту.

В дальнейшем все основные особенности взаимодействия между вкладчиком и банком зависят от пунктов в депозитном договоре. К таким особенностям относятся: размер и периодичность выплат клиенту по депозиту.

Обычно банк, планируя привлечения средств вкладчиков, декларирует % доходности не ниже инфляционного %. Такая политика прослеживается сейчас в большинстве экономически развитых странах (ЕС, США, Канада, Япония) у подавляющего количества кредитно-финансовых учреждениях в этих странах. Отдельные крупные финансовые холдинги, действующие в международных масштабах, анонсируют доходность по размещенным в них депозитам физических лиц на 1,5-2% инфляционного индекса (темпа роста рыночных цен, в % выражении).

Депозитный калькулятор онлайн. Рассчитайте свой доход

Если договор о привлечении средств вкладчика составлен на год, и в нем отсутствует пункт о ежемесячных выплатах клиенту, то размер таких сумм может быть вычислен клиентом, без того, чтобы им была использована опция депозитный калькулятор онлайн. Такая сервисная функция уже больше 3-4 лет точно присутствует на сайтах крупнейших российских банков, входящих в топ 100 лучших финансовых институтов в стране. Эта финансовая «программка» позволяет вкладчику рассчитать свои ежемесячные или совокупные выплаты в тех случаях, когда:

  • Деньги на депозит помещаются на 2 и более лет
  • Проценты по депозиту клиенту выплачиваются ежемесячно
  • Процентная ставка не является фиксированной, и меняется один и более раз в период действия депозитного договора

Депозитный калькулятор онлайн, экономит и оптимизирует время

Во всех вышеперечисленных случаях для среднестатистического вкладчика осуществлять самостоятельные расчеты затруднительно. Например, в тех случаях, когда договора депозитного вклада заключается на 2 и более лет требуется знание формулы сложных процентов. А автоматизированная, присутствующая на сайте банка опция депозитный калькулятор онлайн даст возможность вкладчику произвести все подсчеты самостоятельно, и узнать свой совокупный доход по депозиту за несколько лет в течение 2-3 минут максимум.

Заполнение анкеты состоит в ответах вкладчика на три несложных вопроса:

Депозитный калькулятор онлайн, что заполнять

  1. Процентная ставка по депозиту
  2. Сумма депозитного вклада
  3. Срок размещения средств
  4. Валюту вклада

Заполнив все поля, потенциальный вкладчик нажимает по иконке «рассчитать», и в течение нескольких секунд получает итоговый результат.

Помимо удобств для клиента банка такая инновационная финансовая услуга, как депозитный калькулятор онлайн, экономит и оптимизирует время сотрудников банковских отделов работы с клиентом, давая возможность в течение рабочего дня оформлять больше договоров о привлечении средств на депозитные счета в банке.

В крупнейших российских банках можно и деньги поместить на депозит в режиме онлайн. Согласно существующей сегодня банковской статистике почти 60% доходов в структуре совокупных доходов банкам приносят депозитные вклады, и кредитное обслуживание населения является. Для российских банковских гигантов, входящих в топ 10, депозитные операции и кредиты являются основной специализацией в финансовой деятельности этих финансовых структур.

Ход урока

I. Организационный этап.

Проверяется подготовленность классного помещения и готовность учащихся к уроку. Здравствуйте ребята! Я рада вас видеть.

Сообщается тема урока Слайд 1 (учащиеся записывают дату в тетради) и эпиграф Слайд 2. Сегодня мы с вами заканчиваем изучать тему: «Проценты». А эпиграфом урока будут слова математика и педагога Джорджа Пойа(1887-1985) – Елсивыохтитеначуитьсяплваать,то смлеовхдоитеввдоу,аеслихтоитеначуитьсяреаштьзаадчи,торшеайтеих.

Эпиграф на слайде зашифрован: наш мозг способен отделять верное от ошибочного, проверьте себя! «Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи, то решайте их!»

Рассказывает ученик:Биографическая справка. Джордж Пойа (George Polya, 1887-1985) – математик с мировым именем. Родился в Будапеште. В отечественной литературе известен как Георг Полиа (немецкий вариант его имени и фамилии). В предвоенные годы работал в Швейцарии, Англии и Германии. Затем, как и многие другие учёные, вынужден был покинуть Европу и переехать в США. Сферой его научных интересов были такие области математики, как теория чисел, комбинаторика, теория вероятностей. Пойа большую часть своей научной карьеры провёл в ранге профессора математики в знаменитом Стэнфордском университете в США.

Историческая справка о проценте: (презентация по гиперссылке «Нажми»), читает ученик.

Ставится задача:Сегодня на уроке мы вместе вспомним понятие процента. Конечно же, решим задачи на эту тему. Нам в этом поможет мультигерой. Слайд 4 Узнали?

Тема мультигероя взята не случайно. Это как напоминание о том, что бояться процентов смешно.

II. Актуализация опорных знаний и умений учащихся.

1. Фронтальная работа.Ответьте на вопросы:

Как найти 1% от числа? Сформулируйте правила перевода % в десятичную дробь; десятичную дробь в %; обыкновенные дроби в десятичные и в %.

Слайд 6, 7

Задания решают на доске три ученика, остальные в тетрадях, потом проверить. (Или устно)

а) Замените проценты десятичной дробью.

  • 6%=0,03;
  • 33%=0,33;
  • 1,7%=0,017;
  • 113%=1,13;
  • 96%=0,96

б) Замените десятичную дробь процентами.

  • 0,019=1,9%;
  • 0,44=44%;
  • 8,5=850%;
  • 2,02=202%;
  • 0,007=0,7%

в) Замените обыкновенную дробь десятичной, а потом – в проценты.

  • 1/8=0,125=12,5%;
  • 3/5=0,6=60%;
  • 5/4=1,25=125%;
  • 1/5=0,2=20%;
  • 12/25=0,48=48%.

Самостоятельная работа в парах.

Слайд8

III. Закрепление. Индивидуальная работа.

Задачи решают на доске или устно с пояснениями.

а) Спанч Боб получил 6000 руб. 60% заплатил за медуз. Сколько рублей он заплатил? Сколько рублей у Боба осталось?

б) В морской школе 160 детенышей морского конька — это 60% всего числа детенышей. Сколько детенышей в этой школе?

Опрос одного ученика, а все остальные помогают ему и дополняют ответ. Ответы учеников на первый вопрос I задачи могут быть двух видов:

Первый : Чтобы найти число надо узнать, сколько приходится на 1%, для этого6000 разделить на 100, а потом результат умножить на 60.

Второй :Чтобы найти часть от числа, надо 60% выразить в десятичную дробь и найти дробь от числа 6000

VIII. Подведение итогов урока.

  1. Повторение алгоритмов решения изученных задач. Работа у доски более подготовленных учеников в паре.

  2. Выставление оценок. Рефлексия.

Литература:                                                    

  1. Зубарева, А.Г. Мордкович Математика 6 класс. – М.: Мнемозина, 2007.
  2. Мегаэнциклопедия Кирилла и Мефодия: mega.km.ru
  3. Сайты «Энциклопедии энциклопедий», например: www.encyclopedia.ru
  4. Энциклопедия. Я познаю мир. Великие ученые. – М.: ООО «Издательство АСТ», 2003.
  5. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика: учебник для 5 кл. общеобразоват. учреждений – М.:Мнемозина, 2008.
  6. Игровой развлекательный диск “Мир головоломок. Занимательная математика”. ЗАО «Новый диск» Falcson-technology, 2003. — КАРТИНКИ

Соотношения чисел

Есть случаи, при которых можно использовать простые дроби.

  • 10% — десятая часть целого. Чтобы найти десять %, понадобится известное разделить на 10.
  • 20% — пятая часть целого. Чтобы вычислить двадцать % от известного, его нужно разделить на 5.
  • 25% — четверть целого. Чтобы вычислить двадцать пять %, понадобится известное разделить на 4.
  • 50% — половина целого. Чтобы вычислить половину, нужно известное разделить на 2.
  • 75% — три четверти целого. Чтобы вычислить семьдесят пять %, нужно известное значение разделить на 4 и умножить на 3.

Задача для тренировки. В черную пятницу вы нашли отличный пиджак со скидкой 25%. В обычный день он стоит 8500 рублей, но сейчас с собой есть только 6400 рублей. Хватит ли средств для покупки?

Как решаем:

  1. 100 — 25 = 75,
    значит нужно заплатить 75% от первоначальной цены.
  2. Используем правило соотношения чисел:
    8500 : 4 * 3 = 6375.

Ответ: средств хватит, так как пиджак стоит 6375 рублей.

Механизм работы

До сих пор мы рассматривали работу сложного процента в теории. Рассмотрим, что они из себя представляют на практике, на примере банковских депозитов и инвестиций.

На примере банковского депозита

При выборе банковского депозита вкладчик должен обращать внимание на несколько параметров: надежность банка, его участие в государственной системе страхования, условия пополнения и снятия денег, минимальная сумма на счете. Но главный из них – процентная ставка и условия ее начисления

Механизм сложных процентов подключен к вкладам с капитализацией процентов. А сама ставка, которая будет действовать на вашем счете, называется эффективной. Если вы не планируете снимать начисленный доход в течение всего срока накопления, то логично выбрать вклад именно с капитализацией.

Сравним полученный доход по депозиту с начислением процентов ежегодно, ежеквартально, ежемесячно и ежедневно. Первоначальные условия:

  • сумма – 400 000 ₽;
  • % ставка – 4 % годовых;
  • срок вклада: 1, 2 и 3 года.

Сумма, которую получит вкладчик в конце срока, составит:

Срок депозита Начисление процентов
1 раз в год 1 раз в квартал 1 раз в месяц 1 раз в день
1 год 416 000 416 241,6 416 296,62 416 323,38
2 года 432 640 433 142,68 433 257,18 433 312,9
3 года 449 945,6 450 730,01 450 908,75 450 995,73

В инвестициях

Сложный процент работает не только в банковской, но и в инвестиционной сфере. Если в банках процесс начисления процентов на проценты называют капитализацией, то в инвестициях – реинвестированием, т. е. повторным инвестированием. Но суть остается одинаковой.

Долгосрочные инвесторы хорошо знакомы с механизмом сложных % и стараются его использовать по максимуму. Рассмотрим, как он работает в различных инвестиционных инструментах.

Облигации

Доходность облигации складывается из двух источников – рост котировок и купоны. Последние выплачиваются в виде % от номинала ценной бумаги. Как правило, раз в полгода.

Эффект сложного процента можно наблюдать на купонных выплатах, но только в одном случае – если вы полученную прибыль не тратите на текущее потребление, а повторно вкладываете в инвестиции, т. е. реинвестируете. Понятно, что на доход от одной облигации мало что можно купить. Но если ценных бумаг несколько десятков или сотен, то сумма достаточна для покупки еще нескольких облигаций.

Из книги вы узнаете, как устроен мир прибыльного инвестирования

Скачать книгу

Например, владелец одной ОФЗ-26212-ПД 2 раза в год будет получать по 35,15 ₽. За год заработает 70,3 ₽. На эти деньги нельзя купить новую ОФЗ. Если облигаций не одна, а, например, 50 штук, то за год доход составит 3 515 ₽. Можно купить еще 3 ОФЗ за 1 085,81 ₽/шт. (котировка на 27.10.2020).

Если вы не держите облигацию до погашения, а пытаетесь заработать на росте котировок, то и в этом случае полученную прибыль от перепродажи лучше реинвестировать для включения механизма сложных %.

Акции

Точно такой же эффект, как описанный в предыдущем примере, может давать реинвестирование дохода от акций в покупку новых акций. Для этого полученные дивиденды не надо выводить со счета, а повторно инвестировать.

Не все эмитенты выплачивают дивиденды. Некоторые инвесторы покупают в свои инвестиционные портфели акции роста, т. е. бумаги, которые в перспективе могут вырасти в цене. Купил дешевле, продал дороже – одна из стратегий инвестирования. Сложный % заработает, если на полученную прибыль от перепродажи увеличится капитал в инвестициях, а не количество вещей в гардеробе.

Аналогично механизм “снежного кома” работает и с другими инструментами инвестиций. Эффект можно усилить, если инвестировать на ИИС, тогда каждый возврат подоходного налога (максимум 52 000 ₽ в год) необходимо опять возвращать на брокерский счет и покупать ценные бумаги.

Кредиты банков Уфы

Формулы расчета

Раз есть сложный, значит, есть и простой процент. Несправедливо, если мы не разберем младшего брата нашего героя.

Простой процент

Простой процент каждый расчетный период (месяц, квартал, год) начисляется только на первоначальную сумму. Никакого эффекта “снежного кома” он не дает. Сумма увеличивается медленно.

Формула расчета:

SN = SП * (1 + % ст * N), где

  • SN – сумма в конце периода N;
  • SП – первоначальная сумма капитала;
  • % ст – процентная ставка (доход);
  • N – расчетный период.

Формула справедлива, если речь идет о начислении дохода раз в год. Например, положили на счет 100 000 ₽ под 10 % годовых на 10 лет. В конце срока получите: 100 000 * (1 + 0,1 * 10) = 200 000 ₽.

В реальной жизни понятие простого % применяется, например, в экономических расчетах по банковским вкладам без учета капитализации. В договоре обязательно указывается годовая процентная ставка. Проценты начисляются за каждый день нахождения денег на вкладе. А получать доход вкладчик может ежемесячно, ежеквартально или раз в год.

В этом случае формула примет вид:

SN = SП * (1 + % ст * Д / 365), где

Д – количество полных дней нахождения денег на депозите.

Например:

  1. Положили на счет 100 000 ₽ под 10 % годовых на 91 день. В конце срока получите: 100 000 * (1 + 0,1 * 91 / 365) = 102 493,15 ₽.
  2. На 180 дней: 100 000 * (1 + 0,1 * 180 / 365) = 104 931,51 ₽.
  3. На 2 года (730 дней): 100 000 * (1 + 0,1 * 730 / 365) = 120 000 ₽.

Сложный процент с начислением дохода 1 раз в год

По методу сложных процентов при начислении дохода 1 раз в год будущая сумма определяется по формуле:

SN = SП * (1 + % ст)N

Пример. В банк положили 100 000 ₽ под 10 % годовых на 2 года. Будущая стоимость вклада составит: 100 000 * (1 + 0,1)2 = 121 000 ₽.

Сложный процент с начислением дохода чаще, чем 1 раз в год

Доход может начисляться ежемесячно, ежеквартально или 2 раза в год. Формула меняется:

SN = SN * (1 + % ст / К)N*К, где

К – частота начисления дохода (12, 4 или 2 раза в год).

Пример. В банк положили 100 000 ₽ под 10 % годовых на 2 года с ежемесячным начислением процентов. Будущая стоимость вклада составит: 100 000 * (1 + 0,1/12)24 = 122 039,1 ₽.

Типы задач на проценты

В 5, 6, 7, 8, 9 классах в задачках по математике на проценты сравнивают части одного целого, определяют долю части от целого, ищут целое по части. Давайте рассмотрим все виды задач на проценты.

Тип 1. Нахождение процента от числа

Чтобы найти процент от числа, нужно число умножить на процент.

Задача. За месяц на заводе изготовили 500 стульев. 20% изготовленных стульев не прошли контроль качества. Сколько стульев не прошло контроль качества?

Как решаем: нужно найти 20% от общего количества изготовленных стульев (500).

20% = 0,2

500 * 0,2 = 100

Из общего количества изготовленных стульев контроль не прошли 100 штук.

Тип 2. Нахождение числа по его проценту

Чтобы найти число по его проценту, нужно его известную часть разделить на то, сколько процентов она составляет от числа.

Задачи по поиску процента по числу и числа по его проценту очень похожи. Чтобы не перепутать — внимательно читаем условия, иначе зайдем в тупик или решим неправильно. Если в задании есть слова «который», «что составляет» и «который составляет» — перед нами задача по нахождению числа по его проценту.

Задача. Школьник решил 38 задач из учебника. Что составляет 16% числа всех задач в книге. Сколько всего задач собрано в этом учебнике?

Как решаем: мы не знаем, сколько всего задач в учебнике. Но нам известно, что 38 задач составляют 16% от общего количества. Запишем 16% в виде дроби: 0,16. Далее известную нам часть целого разделим на ту долю, которую она составляет от всего целого.

38/0,16 = 38 * 100/16 = 237,5

Значит 237 задачи включили в этот сборник.

Тип 3. Нахождение процентного отношения двух чисел

Чтобы найти, сколько процентов одно число составляет от другого, нужно ту часть, о которой спрашивается, разделить на общее количество и умножить на 100%.

Задача. В классе учится 25 человек. 10 из них — девочки. Сколько процентов девочек в классе?

Как решаем: возьмем алгоритм из правила выше:

10/25 * 100% = 2/5 * 100% = 2 * 100/5 = 47%

В классе учится 10 девочек — это 47%.

Тип 4. Увеличение числа на процент

Чтобы увеличить число на некоторое количество процентов, нужно найти число, которое выражает нужное количество процентов от данного числа, и сложить его с данным числом.

Формула расчета процента от числа выглядит так:

a = b * ((1 + c) / 100),

где a — число, которое нужно найти,

b — первоначальное значение,

c — проценты.

Задача. В прошлом месяце стикер-пак стоил 110 рублей. А в этом месяце на 12% больше. Сколько стоит стикер-пак?

Как решаем: подставим в формулу данные из условий задачи.

110 * (1 + 12/100) = 110 * 1,12 = 123,2.

Стоимость стикер-пака в этом месяце — 123 рубля 20 копеек.

Тип 5. Уменьшение числа на процент

Чтобы уменьшить число на несколько процентов, нужно найти число, которое выражает нужное количество процентов данного числа, и вычесть его от данного числа.

Формула расчета выглядит так:

a = b * ((1 — c) / 100),

где a — число, которое нужно найти,

b — первоначальное значение,

c — проценты.

Задача. В прошлом году школу закончили 100 ребят. А в это году выпускников на 25 меньше. Сколько выпускников в этом году?

Как решаем: подставим в формулу данные из условий задачи.

100 * (1 – 25/100) = 75

75 выпускников закончат школу в этом году.

Тип 6. Задачи на простые проценты

Простые проценты — метод расчета процентов, при котором начисления происходят на первоначальную сумму вклада или долга.

Формула расчета выглядит так:

S = а * ((1 + у * х)/ 100),

где a — исходная сумма,

S — сумма, которая наращивается,

x — процентная ставка,

y — количество периодов начисления процента.

Задача. Родители взяли в банке кредит 5000 рублей, чтобы купить тебе что-то классное. Кредит на год под 15% ежемесячно. Сколько денег они внесут через год?

Как решаем: подставим в формулу данные из условий задачи.

5000 * (1 + 12 * 15/100) = 14000

Родители через год внесут в банк 14000 рублей.

Тип 7. Задачи на сложные проценты

Сложные проценты — это метод расчета процентов, когда проценты прибыли прибавляют к сумме на остатке каждый месяц. В следующий раз проценты начисляют на эту новую сумму.

Формула расчета выглядит так:

S = а * ((1 + х)/100)y,

где S — наращиваемая сумма,

a — исходная,

x — процентная ставка,

y — количество периодов начисления процента.

Задача. Папа взял в банке кредит 25000 рублей на 3 месяца под 15%. Нам нужно узнать, сколько денег придется заплатить банку по истечении срока кредита.

Как решаем: просто подставим в формулу данные из условий задачи:

25000 * (1 + 15/100)3 = 38021,875 — искомая сумма.

Способы нахождения процента

Универсальная формула для решения задач на проценты:

A * b = C,
где A — исходное число,
b — проценты, переведенные в десятичную дробь,
C — новое число.

Чтобы применить алгоритм, нужно прочитать задачу, отметить, какие два числа нам известны и найти третье.

Есть еще четыре способа поиска процентов. Рассмотрим каждый из них.

Что такое проценты?

Это слово произошло от английского словосочетания Pro Centum

Прочитав это словосочетание, вы наверняка обратили внимание, что там присутствует слово цент. От этого и происходит смысл процентов

Как известно, цент — одна сотая часть от доллара. Поэтому 1% — это и есть одна сотая часть от числа.

Сейчас в процентах измеряются многие финансовые показатели:

  1. налоги,
  2. доли в бизнесе,
  3. доходность от инвестиций,
  4. премии и штрафы,
  5. инфляция.

И не только финансовые:

  1. рождаемость и смертность,
  2. статистика удачных и неудачных браков,
  3. коэффициент полезного действия.

Давайте разберёмся более подробно, как посчитать процент от суммы. Мы приведём вам несколько примеров, которые помогут вам все понять.

Пример 1. Водитель таксомоторной службы отработал смену. За день его выручка составила 5 тыс. рублей. Ему необходимо отдать службе такси комиссию с этих заказов — 15%. Чтобы узнать сумму, которую должен заплатить водитель, необходимо 5 тыс. умножить на 15, после чего разделить на 100. Мы получаем результат, равный 750 рублей. Как вы уже догадались, 15% — это 15 частей из ста.

Теперь мы приведём вам обратный пример с тем же водителем такси. Так, за смену он заработал 5 тыс. рублей. Он потратил определённую часть этих денег на обязательные расходы:

  1. комиссию службе такси — 750 рублей,
  2. мойку автомобиля — 250 рублей,
  3. топливо — 1 тыс. рублей.

Итого у водителя остаётся 3 тыс. рублей. Из заработанных 5 тыс. рублей себе он забирает только 3. Теперь наша задача посчитать, какую часть от общей выручки он может смело положить к себе в карман. Для этого нам нужно разделить 3 тыс. на 5 тыс. После чего полученный результат, равный 0,6, умножить на 100%. Получается, водитель забирает себе в карман 60% от общей выручки.

Это интересно: разрядные слагаемые что это?

Пример 2. Четыре акционера открыли бизнес. Спустя год упорной работы он начал приносить доходы. Партнёры решили делить прибыль поровну, то есть каждому достанется по 25% от прибыли. Нам нужно посчитать, сколько денег получит каждый из них.

Допустим, бизнес приносит доход 200 тысяч рублей в месяц. Чтобы посчитать прибыль каждого из акционеров, необходимо умножить 200 тыс. на 25, и разделить на 100. Получаем результат — 50 тыс. рублей.

Пример 3. Конверсия продаж. Менеджер по продажам предлагает услуги своей компании по телефону. За месяц он совершил 800 звонков. Заинтересовались в услугах компании 280 клиентов. Для подсчёта конверсии продаж необходимо 280 разделить на 800, после чего умножить на 100. Результат будет равен 35%.

Простые и сложные проценты

Инвесторы, которые работают на рынке Форекс, сталкиваются с повторным вложением денег (реинвестированием) постоянно. Если банковские депозиты приносят владельцам прибыль через несколько месяцев или даже год, то на валютном рынке прибыль/убыток появляется после каждой сделки.

Поэтому все, кто интересуется инвестициями на Форексе, будут регулярно работать с простыми и сложными процентами. Давайте же разберемся, что же означают эти понятия.

Простой процент используется в случаях, когда база начисления процентов всегда равна начальной сумме вложений. Это могут быть специальные банковские депозиты, проценты по кредиту. Также простой процент используется, когда инвестор регулярно выводит прибыль — в каждый период времени работает первоначальная сумма.

Каждый раз, когда инвестор хочет несколько раз «прокрутить» свои деньги через инвестиционный инструмент, он сталкивается со сложным процентом. Полученная прибыль на первом круге реинвестируется и проценты уже начисляются на более крупную сумму.

В инвестициях на рынке Форекс сложный процент используется постоянно, потому что сумма вложений меняется после каждой сделки. Многие инвесторы используют тактику «вложил и забыл», оставляя полученную прибыль работать вместе со стартовым вкладом.

Разница между простыми и сложными процентами на первый взгляд кажется не такой уж большой. Но чем больше проходит времени, тем очевиднее становится преимущество сложных процентов:

Простые и сложные проценты на одном графике

Конечно, это всё теория и на практике добиться 30-кратного реинвестирования прибыли совсем непросто. Но факт остаётся фактом — сложные проценты могут сослужить хорошую службу инвестору. И чтобы умело их использовать, нужно правильно их считать, в чём помогут несколько полезных формул.

Составление пропорции

Пропорция — определенное соотношение частей между собой.

С помощью метода пропорции можно рассчитать любые %. Выглядит это так:

a : b = c : d.

Читается: a относится к b так, как с относится к d

Также важно помнить, что произведение крайних членов равно произведению средних. Чтобы узнать неизвестное из этого равенства, нужно решить простейшее уравнение

Рассмотрим пример. На сколько выгодно покупать спортивную футболку за 1390 рублей при условии, что в магазине в честь дня всех влюбленных действует скидка 14%?

Как решаем:

  1. Узнаем сколько стоит футболка сейчас в % соотношении:
    100 — 14 = 86,
    значит 1390 рублей это 86%.
  2. Составим пропорцию:
    1390 : 100 = х : 86,
    х = 86 * (1390 : 100),
    х = 1195,4.
  3. 1390 — 1195,4 = 194,6.

Ответ: купить спортивную футболку выгоднее на 194,6 рубля.

Заключение

Используйте силу сложного процента для создания личного капитала. Чем раньше начнете, тем быстрее он сформируется и станет обеспечивать вас и ваших детей. Время и дисциплина – наши помощники.

Поэтому так важно уже в подростковом возрасте объяснять, что и как работает в мире финансов. У молодых людей есть достаточно времени, чтобы обеспечить свою пенсию

Начать можно с небольших, но регулярных сумм, а потом увеличивать размер инвестиций, чтобы быстрее достичь финансовых целей. А вы верите в то, что государство придумает, как вас обеспечить в старости? Или уже начали сами строить свое будущее?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector